Lab 1: Manual Digitizing and Analysis in QGIS and R

Part 1: Manual Digitizing in QGIS (1hr)

1. Sentinel-2 Image

Download a Sentinel-2 image of Tabor Lake, just east of Prince George, using, for example, Copernicus Open Access Hub, Sentinel Hub EO Browser, Copernicus Browser.

2. Load the Image into QGIS

Open QGIS and load the Sentinel-2 image.

3. Create a False-Color Composite

Combine bands for SWIR (Band 11 or Band 12), NIR (Band 8), and Red (Band 4) as RGB.

4. Create a GeoPackage

In QGIS, create a new GeoPackage named "GEOG450_Lab1_AB.gpkg" (replace AB with your initials): Go to Layer > Create Layer > New GeoPackage Layer. Set the CRS to EPSG:3157. Add a new layer for polygons.

5. Digitize the Lake Manually

Using the **Digitize** tool, manually draw the boundary of Tabor Lake. Ensure the polygon fully encloses the lake area. Save edits!

6. Add Attributes to the Layer

Add the following fields in the attribute table:

- lake_name (Text) = "Tabor Lake"

- analyst_initials (Text) = Your initials (e.g., "AB")

```
- image_source (Text) = "Sentinel-2 MSI"
```

- image_date (Date) = Date of the Sentinel-2 image (e.g., "2025-01-01") Save edits!

7. Calculate the Lake Area

Add a field lake_area (Numeric) to store the area. Use the **Field Calculator** in QGIS to calculate the area in square kilometers or meters: This the expression \$area to get the area in square metres. Save edits!

8. Submit GeoPackage to <u>alex.bevington@unbc.ca</u>

Part 2: Class Comparison and Analysis in R

1. Read all available GeoPackages

Load all GeoPackages in L:\GEOG450\Lab_1 into R Studio using the sf package. If there are not enough files in the folder, start working and more will appear. For example:

R

Install.packages("sf") library(sf) files <- list.files("L:/GEOG450/Lab_1", pattern = "\\.gpkg\$", full.names = TRUE) geodata <- lapply(files, st_read) combined_data <- do.call(rbind, geodata)

2. Clean Metadata

Check for consistency in attribute names, CRS, and data formats. Standardize attributes if necessary using R functions like dplyr::rename.

3. Plot All Lakes

Use ggplot2 to visualize all the lakes on a single map. For example:

R

Install.packages("ggplot2") library(ggplot2) ggplot(combined_data) + geom_sf(aes(fill = lake_name)) + theme_minimal()

4. Analyze Variability

Analyze the variability of the polygons. For example, compute summary statistics (mean, median, standard deviation). Which is best? What do you notice?

Part 3: Write it up (max 2 pages including figures)

Short report should have at least 2 figures, for example: 1) Map of the satellite image with all of the lake polygons; and 2) A figure from your analysis of the polygons. Describe your work like a mini 2 page research paper with a title (intro, methods, results, discussion, conclusion). Note: maps should have a legend, scale bar, coordinates, and title. Send as a PDF to <u>alex.bevington@unbc.ca</u> by the start of the next lab on Jan 16. **Points:** Intro (1), Methods (2), Results (4), Discussion (2), Clarity (1)