
alex.bevington@unbc.ca
2025-01-14

GEOG 450/650

Programming

Housekeeping

•Syllabus: updates on course website
•Reminders:

• Create (free) Google Earth Engine account by Thursday
• Read Coetzee et al. (2020) by Thursday

•Project description will be handed out next Tuesday
•Mid-term will be based the guest speaker presentations

Podcast discussion

•Main points
•What’s exciting
• Implications

Is it worth learning to code in 2025?

Reasons to learn coding

•Automate repetitive tasks
•Analyze large datasets
•Create reproducible workflows
•Widely applicable skill
•Many workflows don’t exist
•Cutting edge

Programming 101:
Command line

• A text-based interface for interacting with your computer,
allowing users to execute commands directly.
• Prompt: Indicates the system is ready to receive commands.
• Commands: Text instructions to perform actions.
• Arguments: Additional options or data passed to commands.

• Advantages:
• Fast and efficient for repetitive tasks.
• Enables automation through scripts.
• Direct access to system functions not always available via GUI.

Programming 101: Command line

• General Syntax:
• command [options] [arguments]

• Examples:
• List files and directories: ls –l
• Change directory: cd /path/to/directory
• Create a file: touch filename.txt
• Useful for running software/scripts, etc.

• Tons of learning resources online (e.g. command line ninja!)

Overview of R

•Originally designed for statistics and data visualization
•Very popular with ecologists, hydrologists, biologists, etc.
•Less for geospatial development, but still very powerful.
•Key features:

• Powerful data manipulation and statistical packages
• Rich visualization libraries

•R Studio is the most popular IDE

Python

•General-purpose programming language
•Very popular in geospatial analysis
•Well integrated with QGIS, ArcGIS, Earth Engine, etc.
•Key features:

• Versatility (data science, web development, etc.)
• Extensive libraries and frameworks

• Many IDEs (Jupyter, VS Code, PyCharm, Spyder, etc.)

Other languages, for example…

•General-Purpose: Java, C, C++, C#, Rust
•Web: JavaScript, TypeScript, PHP, Ruby, HTML & CSS
•Data Science: Julia, MATLAB, SAS
•Database and Query Languages: SQL, MQL, etc.

We’re not so different!

•R

Hello, R!
print("Hello, world!")

install.packages(“dplyr”)
library(dplyr)

•Python

Hello, Python!
print("Hello, world!")

pip install numpy
import numpy

Functionality Python Package(s) R Package(s)

Data Manipulation pandas dplyr, data.table

Data Visualization matplotlib, seaborn, plotly ggplot2, plotly, lattice

Statistical Analysis statsmodels, scipy.stats stats, lm, MASS

Machine Learning scikit-learn, tensorflow, keras caret, mlr3, xgboost, h2o

Deep Learning tensorflow, keras, PyTorch tensorflow, keras, torch

Geospatial Analysis geopandas, shapely, rasterio sf, terra, stars

Google Earth Engine geemap rgee

Time Series Analysis statsmodels.tsa, prophet forecast, zoo, xts

Database Interaction SQLAlchemy, sqlite3, psycopg2 DBI, RSQLite, Rpostgres

Parallel Computing dask parallel, future

Reproducible Reports jupyter knitr, rmarkdown

Interactive Dashboards streamlit shiny

Category R Data Types Python Data Types

Numeric Integer, numeric int, float

Character/String character str

Logical/Boolean logical (TRUE, FALSE) bool (True, False)

Vectors vector (e.g., c(1, 2, 3)) numpy.array

Lists List list

Matrices Matrix numpy.array

Data Frames data.frame, tibble pandas.DataFrame

Factors/Categorical factor pandas.Categorical

Null/Empty NULL, NA, NaN None, NaN, pd.NA

Dates and Times Date, POSIXct, POSIXlt datetime.date,
datetime.datetime

Functions: Example add two numbers

R add_numbers <- function(a, b){

 return(a + b)}

 add_numbers(5, 3)

 > 8

Python def add_numbers(a, b):

 return a + b

 add_numbers(5, 3)

 > 8

Logical operators
Operation R Python
Equal to == ==
Not equal to != !=
Greater than > >
Less than < <

Greater or equal >= >=

Less or equal <= <=

Logical AND & and

Logical OR ` `
Logical NOT ! not

R

x <- 10
y <- 20

if (x > 5 & y < 30) {
 print("Both are true")
} else {
 print("At least one is false") }

Python

x = 10
y = 20

if x > 5 and y < 30:
 print("Both are true")
else:
 print("At least one is false")}

Loops

•R my_list <- c(1, 2, 3, 4)

 for (item in my_list) {
 print(item)}

•Python my_list = [1, 2, 3, 4]

 for item in my_list:
 print(item)

Iterating over elements

• In both R and Python, lapply and map are tools for
functional programming that allow you to apply a function
to each element in a list or vector.
• They are often used as an alternative to traditional loops

because they can be more concise and are often faster.

Version control
with git
• Tracks changes in code
• Merge code from many users
• Parallel development without

impacting the main repo
• Logs changes over time (good

for debugging and review)

Reproducible workflows demo

•Example from BC ungauged basins project:
• https://dankovacek.github.io/bcub_demo/notebooks/1_Getti

ng_Started.html
• geemap package in python

• https://geemap.org/notebooks/18_create_landsat_timelapse/
#create-landsat-timeseries

https://dankovacek.github.io/bcub_demo/notebooks/1_Getting_Started.html
https://dankovacek.github.io/bcub_demo/notebooks/1_Getting_Started.html
https://geemap.org/notebooks/18_create_landsat_timelapse/#create-landsat-timeseries
https://geemap.org/notebooks/18_create_landsat_timelapse/#create-landsat-timeseries

	Slide 1: GEOG 450/650 Programming
	Slide 2: Housekeeping
	Slide 3: Podcast discussion
	Slide 4: Is it worth learning to code in 2025?
	Slide 5: Reasons to learn coding
	Slide 6: Programming 101: Command line
	Slide 7: Programming 101: Command line
	Slide 8: Overview of R
	Slide 9
	Slide 10: Python
	Slide 11
	Slide 12: Other languages, for example…
	Slide 13
	Slide 14: We’re not so different!
	Slide 15
	Slide 16
	Slide 17: Functions: Example add two numbers
	Slide 18: Logical operators
	Slide 19: Loops
	Slide 20: Iterating over elements
	Slide 21: Version control with git
	Slide 22: Reproducible workflows demo

