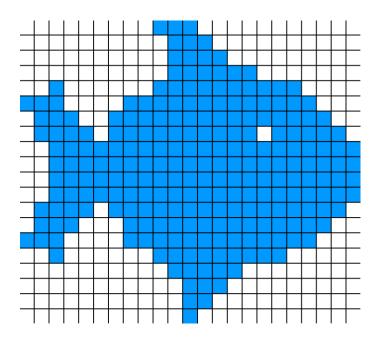

Geospatial tech in your life?

GEOG 450/650 Geospatial Data

Instructor: Alex Bevington <u>alex.bevington@unbc.ca</u>


2025-01-09

Raster

- Grid structure (matrix) of rows and columns
- Defined in map units (e.g., meters, degrees).

• Uses:


- Imagery multispectral, hyperspectral, thermal
- Radar backscatter, phase
- Elevation photogrammetry, lidar, interferometry
- Climate Interpolation of observations, model outputs
- Classification categorical data

Raster Formats

Feature	GeoTIFF	ASCII	NetCDF	
File Type	Raster (binary)	Text (human-readable)	Binary (hierarchical)	
Metadata	Strong (embedded)	Weak (basic headers)	Strong (self-describing)	
Efficiency	High	Low (large file size)	High	
Dimensionality	Limited	Limited	Strong (e.g., 3D, 4D)	
Use Cases	GIS, remote sensing	Simple data sharing	Scientific analysis	
Tool Support	GIS tools (QGIS, ArcGIS)	Universal (text editors)	Scientific libraries	

NetCDF example of storing 4 dimensional data x, y, time

https://docs.xarray.dev/en/stable/user-guide/data-structures.html

Vector

- Data represented by points, lines, or polygons (and MULTI)
- Geometry and attribute data.
- Associated with a CRS (Coordinate Reference System).
- Applications: Road networks, land parcels, boundaries.

Feature	KML/KMZ	GeoJSON	SHP	SQLite	GPKG	GeoParquet	Esri Geodatabase	LAS/LAZ
Туре	Vector (styled)	Vector	Vector	Vector	Vector & Raster	Vector	Vector, Raster,	Point Cloud (3D)
Structure	Single XML file (KMZ is zipped)	Single JSON-based file	Multi-file (shp, shx, dbf, prj)	Single SQLite-based file	Single SQLite-based file	Single binary file	Directory (file-based) or database (enterprise)	Single binary file (LAS) or compressed (LAZ)
Efficiency	Low	Low	Moderate	Moderate	High	High	High	High
Size limit	Moderate 4GB	Moderate ~2GB	Moderate 2GB	Large ~100TB	Large ~100TB	<mark>Very large</mark> <mark>~1PB</mark>	Large 1TB	Moderate ~100GB
Performance	Low	Low	Moderate	Moderate	<mark>High</mark>	<mark>High</mark>	High	High
Best Use	Visualization	Web maps	GIS basics	Lightweight DB	Mixed datasets	Big data/cloud	Enterprise GIS	LiDAR and 3D data
Open	Open	Open	Open	Open	Open	Open	Commercial	Open
Querying	No	No	No	Yes	Yes	Yes	Yes	No
Tools ()	Google Earth	Web libraries	QGIS, ArcGIS	QGIS, SpatiaLite	QGIS, ArcGIS	Big data frameworks	ArcGIS, Esri Software	CloudCompare
R	sf::st_read()	sf::st_read()	sf::st_read()	RSQLite::dbCon()	sf::st_read()	arrow::read_pq()	arcgisbinding::arc.open()	lidR::readLAS()
Python	gp.read_file()	gp.read_file()	gp.read_file()	sqlite3.connect()	gp.read_file()	pandas.read_parq uet()	arcpy	laspy.read()

Spatial Databases

• PostgreSQL with PostGIS (Open-source)

Good for large spatial data with advanced analytics and multi-user capability

• **SpatiaLite** (Open-source)

Lightweight, portable, ideal for single-user or smaller datasets.

• MongoDB (Open-source)

Best for web-based geospatial applications where scalability, flexibility, and schema-free design are critical

• DuckDB (Open-source)

Ideal for spatial analytics in data science workflows, offering in-memory performance and SQL-based querying.

• Oracle Spatial

Enterprise-level solution with strong topology and network modeling capabilities.

• SQL Server with Spatial Extension

Best for Microsoft-based enterprise environments.

• Esri Enterprise Geodatabase:

Designed for use within the Esri ecosystem for advanced geospatial workflows

Cloud Optimized formats

- Designed to be efficient in cloud environments
- Key Features:
 - Efficient Access: range-based HTTP requests, reduces bandwidth usage
 - Self-Describing: metadata is embedded within the file
 - **Compression**: efficient compression techniques
 - Interoperability: can be used by most commercial / open source software
 - **Read-Only**: file is rewritten rather than updated

Format	Туре	Optimized For	Use Cases	
Cloud Optimized Geotiff (COG)	Raster	Large geospatial rasters	Satellite imagery, DEMs	
GeoParquet	Vector	Large-scale vector data	Distributed analytics, big data workflows	
Cloud Optimized Point Clouds (COPC)	Point Cloud	LiDAR/3D data in the cloud	LiDAR data, terrain modeling, 3D mapping	

Data Sources *Group Discussion*

Typical geospatial workflow

1. Data Collection

- Remote Sensing
- Published Datasets
- Field Data

2. Data Storage

- Vector
- Raster
- Databases

3. Data Preprocessing

- Cleaning
- Reprojection
- Transformations

3. Data Analysis

- Spatial Analysis
- Raster Analysis
- Time Series
- Classification
- Statistics

4. Data Visualization

- Static or interactive maps
- Graphs

5. Data Sharing

- Research publication
- Publish streaming services
- Data hosting
- Interactive website

Geospatial Software

• <u>https://github.com/sacridini/Awesome-Geospatial</u>

Examples of advanced geospatial

- <u>https://mghydro.com/watersheds/</u>
- <u>https://sites.research.google/floods/l/0/0/3</u>
- <u>https://firesmoke.ca/forecasts/current/</u>
- https://livingatlas.arcgis.com/landcoverexplorer/
- <u>https://portal.opentopography.org/noaaDataset?noaaID=1451</u>
- <u>https://caltopo.com/map.html</u>

Homework

• Register

• Google Earth Engine (free account) <u>https://earthengine.google.com/ (help</u>)

• Next Tuesday

• Discuss this podcast <u>https://mapscaping.com/podcast/ai-autocomplete-for-qgis/</u>

• On Thursday

• Discuss this paper https://www.mdpi.com/2220-9964/9/2/90