
1

Lab 06 - Regression Analysis

Contents

Introduction 2

Part A: Exploring Kriging 3

Visualize the data .. 4

Spatial Auto Correlation .. 8

Inverse Distance Weighting ... 11

Kriging .. 13

Use CoKriging ... 19

2

Introduction

The objective of this lab assignment is to examine the use of kriging as an interpolation technique. The
student learning outcomes for this lab assignment are:

• Examine the nature of spatial autocorrelation in spatial datasets

• Carry out surface interpolation using kriging

• Critically interpret the results from surface interpolation techniques

• Compare and contrast different surface interpolation techniques

• Validation of interpolated surfaces.

3

Part A: Exploring Kriging

The goal of this part is to introduce you to geostatistics including exploratory spatial data analysis, structural
analysis (calculation and modeling of surface properties of nearby locations), surface prediction and assess- ment
of the results. The instructions are designed to get you acquainted with the concepts and procedures used
in Geostatistical Analyst.

You will use spatial data for Vancouver Island, BC to analyze the spatial structure of water acidity, specifically the
distribution of pH (the concentration of hydrogen ions) in rivers.

The data can be downloaded from the Ministry of Energy and Mines, British Columbia web site, but has
also been provided as RGS_092F.dbf within the van_island folder of the dataset for this lab.

962 records loaded.

 colnames(van_island)

[1] "MASTER_ID" "MAP" "YEAR" "ID" "UTMZ" "UTME_27"
[7] "UTMN_27" "UTME_83" "UTMN_83" "LAT" "LONG" "ELEV"
[13] "MAT" "REP" "SRC" "ODR" "TYP" "PHY"
[19] "DRN" "CON" "WDTH" "DPTH" "FLW" "WAT_COL"
[25] "BNK" "BNK_PPT" "COMP" "SED_COL" "SED_PPT" "CHL_BED"
[31] "CHL_PTN" "HGTH" "COLOR" "HLTH" "HOST" "THICK"
[37] "DATE" "PH" "UW" "FW" "SO4" "ZN"
[43] "CU" "PB" "NI" "CO" "AG" "MN"
[49] "FE" "MO" "U" "W" "SN" "HG"
[55] "AS" "SB" "BA" "CD" "V" "BI"
[61] "CR" "SE" "LOI" "F" "AU1" "WT1"
[67] "AU2" "WT2" "AU_NA" "AU2_NA" "SB_NA" "AS_NA"
[73] "BA_NA" "BR_NA" "CE_NA" "CS_NA" "CR_NA" "CO_NA"
[79] "HF_NA" "FE_NA" "LA_NA" "LU_NA" "MO_NA" "NI_NA"
[85] "RB_NA" "SM_NA" "SC_NA" "NA_NA" "TA_NA" "TB_NA"
[91] "TH_NA" "W_NA" "U_NA" "YB_NA" "ZR_NA" "WT_NA"

Review the file format.doc that contains the metadata.

Deliverable 1:

What is the purpose of this dataset, and when was it collected?

van_island <- read.dbf(‘data/van_island/RGS_092F.dbf’)
cat(paste(count(van_island), "records loaded."))

4

Visualize the data

• Convert dataframe to an sf object using the coordinate system NAD 1983 UTM Zone 10N as the
coordinate system for your frame. > UTM SRIDS for NAD 1983 can be expressed as 26900 + zone >
WGS 84 would be 32600 + zone

50.0°N

49.8°N

49.6°N

49.4°N

49.2°N

49.0 °N

126.0°W 125.5°W 125.0°W 124.5°W 124.0°W

• Load the feature class study_area.shp.

• Select the records with missing pH data (-1) and delete these from the feature class.

 van_island_sf_clean <- van_island_sf %>% filter(PH != -1)

• Select the points within the study area polygon and export to a new feature class.

utmz <- 26900 + van_island$UTMZ[1]

van_island_sf <- van_island %>%

 filter(UTME_83 != '', UTMN_83 != '') %>% # Remove null geometry

 dplyr::select(-UTMZ, -UTME_27, -UTMN_27) %>% # Remove extra coordinates

 #Convert to sf, !!! Assumes all rows have same UTM Zone as 1st row !!!

 st_as_sf(coords = c('UTME_83', 'UTMN_83'), crs = st_crs(utmz))

ggplot(van_island_sf) + geom_sf()

study_area <- st_read(dsn = 'data/van_island', layer = 'study_area') %>%

 st_as_sf() %>% st_transform(crs = st_crs(utmz))

5

 van_island_study_area <- st_intersection(van_island_sf_clean, study_area)

You now have a collection of 728 points within the study area with valid observations for pH. However, some
of the observations represent multiple recordings at the exact same monitoring station.

• Use group_by to determine the presence of duplicate locations.

Deliverable 2

How many monitoring stations have more than one observation?
(Hint you can apply the filter() function to keep rows that match the condition.)

Deliverable 3

For the pH variable: What are the units of measurement? What is the measurement precision?

Deliverable 4

Visually inspect the map of sampling locations. Describe how they are distributed in space (e.g.,
are they uniformly distributed, are all areas sampled).

Now it is time to explore and analyze the pH data.

• Remove duplicate values

• Create a histogram:

 ggplot(pH_points) + geom_histogram(aes(x = PH))

‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Start of Deliverable 2 code

van_island_study_area %>% group_by(LAT, LONG) %>% summarise(n = n()) %>% arrange(desc(n))

pH_points <- van_island_study_area %>% group_by(LAT, LONG) %>% slice(1) %>% ungroup

pH_points <- pH_points %>% sample_n(min(sub_samp, count(pH_points)[[1]]))

6

15

10

5

0

5.5 6.0 6.5 7.0 7.5 8.0
PH

The histogram provides a visual tool to determine whether your data is normally distributed. The indicators
of a normal distribution from a histogram are:

• unimodal bell shape

• mean and median values are very close

• kurtosis close to 3

You can also examine normality using a Q-Q plot.

• Create a Q-Q plot:

 qqPlot(pH_points$PH)

co
un

t

7

−2 −1 0 1 2

norm quantiles

[1] 102 90

For a normal distribution, the Q-Q plot follows a straight-line. If the data is asymmetric (i.e. far from
normal), the points will deviate from the line.

Deliverable 5:

Discuss to what extent the data distribution for pH value follows a normal distribution. Use the
information from the histogram, descriptive statistics and the Q-Q plot.

90
102

pH
_p

oi
nt

s$
P

H

6.
0

6.
5

7.
0

7.
5

8

Spatial Auto Correlation

Now it is time to explore the spatial autocorrelation in the pH data. You accomplish this by examining
different pairs of sample locations. A semiovariogram is created as follows:

• for a pair of locations, determine the distance between the two locations (called h)

point_distance <- matrix(st_distance(pH_points, pH_points, by_element = FALSE), as.integer(count(pH_points)),

as.integer(count(pH_points)))

• for that same pair, determine the difference in values, square this difference (so it is always positive)
and then divide by two (called y)

• repeat this for all possible pairs

• create a scatterplot of distance between the locations (X-axis) and half the difference squared

y <- ((pH_points$PH[1] - pH_points$PH[2])ˆ2)/2

#	Big-O		is	 nˆ2!!!	

num_points <- count(pH_points)[[1]]
make_map <- function(size) {
CJ(1:size, 1:size) %>% filter(V1 < V2)

}
map <- make_map(num_points)

num_point_pairs <- as.integer(count(map))

pH_pairs <- data.frame(p1 = integer(), p2 = integer(), d = numeric(), y = numeric())

for (i in 1:num_point_pairs) {
dist <- point_distance[map$V1[i], map$V2[i]]
y <- ((pH_points$PH[map$V1[i]] - pH_points$PH[map$V2[i]])ˆ2)/2
pH_pairs <- rbind(pH_pairs, data.frame(p1 = map$V1[i], p2 = map$V2[i], d = dist, y = y))
cat("\r", paste0(round(i/num_point_pairs*100, 2), "% "))

}

ggplot(pH_pairs, mapping = aes(x = d, y = y)) + geom_point()

9

2

1

0

0 50000 100000 150000
d

Each dot in the semivariogram represents a pair of locations, not the individual locations on the map.

The semivariogram allows you to explore the degree of spatial autocorrelation. If data is spatially dependent,
pairs of points that are close together (on the far left of the X-axis) should have fewer differences (or be low
on the Y-axis). As points become farther away from each other (moving right on the X-axis), in general, the
difference squared should be greater (moving up on the Y-axis). Often there is a certain distance beyond
which the squared difference levels out. Pairs of locations beyond this distance are considered uncorrelated.

Spatial autocorrelation may depend only on the distance between two locations, which is called isotropy.
However, it is possible that spatial autocorrelation occurs at different distances when considering different
directions. Another way to think of this is that things are more alike for longer distances in some directions
than in other directions. This directional influence is called anisotropy.

pH_pairs_angle <- cbind(pH_pairs, angle[2])
ggplot(pH_pairs_angle %>% mutate(bin = cut(theta, breaks = 4)), mapping = aes(x = d, y = y)) +
geom_point() + facet_wrap(~bin)

y

angle<-cart2pol(x_diff, y_diff, degrees = T)

10

2

1

0

2

1

0

0 50000

100000

150000 0
d

50000

100000

150000

It is important to explore for anisotropy so that you can account for them in the semivariogram. This, in
turn, has an effect on the geostatistical prediction method.

(180,270]

(90,180]

(270,360] y

11

Inverse Distance Weighting

IDW is an exact, deterministic interpolator with few parameters to set. IDW can be a good way to take a
first look at a surface, because no assumptions are made about the data.

50.0°N

49.8°N

49.6°N

49.4°N

49.2°N

49.0 °N

126.0°W 125.5°W 125.0°W 124.5°W 124.0°W

PH

7.5

7.0

6.5

6.0

stat <- gstat(formula=PH~1, locations=pH_points, set=list(idp=2))
idw <- interpolate(raster(study_area, res = 1000), stat)
idw_mask <- mask(idw, study_area)
plot(idw_mask)

#Examine	 Starting		 Data	
ggplot(pH_points) + geom_sf(data = study_area) + geom_sf(aes(col = PH))

12

7.5

7.0

6.5

6.0

250000 300000 350000 400000 450000

• Notice the RMS of the IDW interpolation, using K folds for testing.

 test <- optimize(idw_rms, upper = 5, lower = 1,

points=pH_points, formula = PH~1, k = k_folds, ittr=def

54
40

00
0

54
80

00
0

55
20

00
0

idw_rms <- function(points, formula, idp = 2, k = k_folds, ittr = deff_ittr,

debug = FALSE){

 rms <- rep(NA, k * ittr)

 for (j in 1:ittr){

 fold <- kfold(nrow(points), k = k)

 for (i in 1:k){

 test_data <- points[fold == i,]

 train_data <- points[fold != i,]

 stat <- gstat(formula=formula, locations=train_data, set=list(idp=idp))

 pred <- predict(stat, test_data, debug.level = 0)$var1.pred

 rms[i + ((j-1) * k)] <- sqrt(mean((test_data$PH - pred)^2))

 cat("\r", paste0(round((i + ((j-1) * k))/(k * ittr)*100, 2), "% "))

 }

 }

 if (debug){

 print(paste('idp:', round(idp, 4), "RMS:", round(mean(rms), 4)))

 }

 round(mean(rms), 4)

}

idw_rms(points = pH_points, formula = PH~1, ittr = deff_ittr, k=k_folds)

13

25% 50% 75% 100% [1] "idp: 2.5279 RMS: 0.4204"
25% 50% 75% 100% [1] "idp: 3.4721 RMS: 0.423"
25% 50% 75% 100% [1] "idp: 1.9443 RMS: 0.3845"
25% 50% 75% 100% [1] "idp: 1.5836 RMS: 0.3966"
25% 50% 75% 100% [1] "idp: 1.9305 RMS: 0.3879"
25% 50% 75% 100% [1] "idp: 2.1672 RMS: 0.381"
25% 50% 75% 100% [1] "idp: 2.0637 RMS: 0.3985"
25% 50% 75% 100% [1] "idp: 2.1672 RMS: 0.4175"

25% 50% 75% 100% [1] "idp: 2.1277 RMS: 0.3955"

25% 50% 75% 100% [1] "idp: 2.1521 RMS: 0.4013"
25% 50% 75% 100% [1] "idp: 2.1614 RMS: 0.3854"
25% 50% 75% 100% [1] "idp: 2.165 RMS: 0.3907"
25% 50% 75% 100% [1] "idp: 2.1663 RMS: 0.3921"
25% 50% 75% 100% [1] "idp: 2.1669 RMS: 0.3863"
25% 50% 75% 100% [1] "idp: 2.1671 RMS: 0.4047"
25% 50% 75% 100% [1] "idp: 2.1671 RMS: 0.3892"
25% 50% 75% 100% [1] "idp: 2.1672 RMS: 0.4055"

14

 print(test)

$minimum
[1] 2.167184

$objective
[1] 0.4055

Deliverable 6:

Report the RMSE of the IDW interpolation using an optimized power value and default settings
for the other parameters.

Kriging

In Kriging, a predicted value depends on two factors: a trend and an additional element of variability. The
trend part of a prediction is simply called the trend. The element of variability is called the spatially-
autocorrelated random error. ‘Random’ means that the variability from the trend is not known in advance.

Kriging is a stochastic interpolator. It is very flexible, allows investigation of the spatial autocorrelation in the
data, and requires lots of decision-making. It lets you create several kinds of surfaces: prediction, prediction
standard error, probability, and quantile. Kriging assumes the data come from a stationary process; some
methods require that the data are normally distributed.

Ordinary kriging assumes of model of the form Z(s) = m + e(s), where m is an unknown constant (trend)
and e(s) represents the random variability. One of the main issues concerning ordinary kriging is whether
the assumption of a constant mean is reasonable. Sometimes there are good scientific reasons to reject this
assumption. However, as a simple prediction method, it has remarkable flexibility.

Create an Ordinary Kriging prediction surface: Set Calculate Nugget to True, set Model Type to Exponential
and set Lag Size (range) to 1000 meters.

#	 Determine	 Bounds	
coords <- st_coordinates(pH_points)
min_x <- min(coords[, 'X'])
max_x <- max(coords[,'X'])
min_y <- min(coords[, 'Y'])
max_y <- max(coords[,'Y'])

15

0.20

0.15

0.10

0.05

10000 20000 30000 40000 50000

distance

[using ordinary kriging]

[using ordinary kriging]

	

	

	

se
m

iv
ar

ia
nc

e

#	Make	 gstat	
g <- gstat(NULL, id = "PH", form = PH~1, model=ph.fit, data=pH_points)

#		 Interpolate		 pH		 onto		 new		 grid	
krig <- predict(g, pH_grid_sf)

#			Rasterize			Results	
krig_ras <- interpolate(raster(study_area, res = 1000), g)

16

7.2

7.0

6.8

6.6

250000 300000 350000 400000 450000

diff

#	Mask	and		plot		Raster	
krig_mask <-mask(krig_ras$PH.pred, study_area)
plot(krig_mask)

54
40

00
0

54
80

00
0

55
20

00
0

−
0

.5

0.
0

0.
5

#	 Calculate		 Error	
diff = st_join(pH_points, krig, join = st_nearest_feature) %>%

mutate(diff = PH-PH.pred) %>% dplyr::select(diff)
plot(diff, pch = 17)

17

 cat("FRM: ", sqrt(mean(diff$diffˆ2)))

FRM: 0.3127865

The semivariogram uses a particular function that fits the distribution of semivariances (or dissimilarity) of
data points to the distances that separate them. Lag size is the straight line (vector) that separates any two
locations. A lag has length (distance) and direction (orientation). The lag size is the size of a distance class
into which pairs of locations are grouped in order to reduce the large number of possible combinations. This
is called binning. The lag size controls the size of the bins. Bins are a classification of lags, where all lags
that have similar distance and direction are put into the same bin. Bins are commonly formed by a grid or
a sector method. In Geostatistical Analyst the empirical semivariogram value in each bin is color-coded and
is shown on the semivariogram/covariance surface and graph.

The selection of a lag size has important effects on the empirical semivariogram. For example, if the lag size
is too large, short-range autocorrelation may be masked. If the lag size is too small, there may be many
empty bins, and sample sizes within bins will be too small to get representative “averages” for bins.

When samples are located on a sampling grid, the grid spacing is usually a good indicator for lag size.
However, if the data are acquired using an irregular or random sampling scheme, the selection of a suitable
lag size is not so straightforward. A rule of thumb is to multiply the lag size by the number of lags,
which should be about half the largest distance among all points. In addition, if the range of the fitted
semivariogram model is very small relative to the extent of the empirical semivariogram, you can decrease
the lag size. Conversely, if the range of the fitted semivariogram model is large relative to the extent of the
empirical semivariogram, you can increase the lag size.

k_rms <- function(points, formula, k = k_folds, ran = 1000, ittr = deff_ittr, debug = FALSE) {
rms <- rep(NA, k * ittr)
for (j in 1:ittr){
fold <- kfold(nrow(points), k = k)
for (i in 1:k){
train_data <- points[fold != i,]
test_data <- points[fold == i,]

width <- seq(min(coords[, 'X']), max(coords[,'X']), length.out = grid_dim)
height <- seq(min(coords[, 'Y']), max(coords[,'Y']), length.out = grid_dim)
train_grid <- expand.grid(x = width, y = height)

train_grid_sf <- st_as_sf(pH_grid, coords = c('x', 'y'), crs = st_crs(pH_points))

train.vgm <- variogram(formula, train_data)
train.fit <- tryCatch(fit.variogram(train.vgm, model = vgm(1, model = 'Exp', nugget = TRUE, range
if (length(train.fit) > 1) {
test_k <- krige((PH) ~ 1, train_data, train_grid_sf, model=train.fit, debug.level = 0)
diff = st_join(test_data, test_k, join = st_nearest_feature) %>%
mutate(diff = PH-var1.pred) %>% select(diff)

rms <- sqrt(mean(diff$diffˆ2))
rms[i + ((j-1) * k)] <- rms

} else {
rms[i + ((j-1) * k)] <- NA

}
cat("\r", paste0(round((i + ((j-1) * k))/(k * ittr)*100, 2), "% "))

}
}
if (debug){

print(paste('Range:', round(ran, 4), "RMS:", round(mean(rms, na.rm=TRUE), 4)))

18

25% 50% 75% 100%

[1] 0.4373

k_folds,	 ittr	

	
	
	
	

Deliverable 7:

Did the Kriging model improve upon the earlier IDW models, even without considering
anisotropy? Try to explain where the improvement (if any) comes from.

Now it is time to examine the effect of anisotropy

• Run the Geostatistical Wizard again and create another kriging model.

• Keep all parameters the same but on Step 2 of 5 use the following:

• Set Anisotropy to true, set Calculate Partial to true, and set Direction to 320.

FALSE) {

= TRUE, range

= 0)

}
round(mean(rms, na.rm=TRUE), 4)

}
k_rms(points = pH_points, formula = PH~1, ran = 1000, k = k_folds, ittr = deff_ittr)

k_rms_anis <- function(points, formula, k = k_folds, ran = 1000, ittr = deff_ittr, debug =
rms <- rep(NA, k * ittr)
for (j in 1:ittr){
fold <- kfold(nrow(points), k = k)
for (i in 1:k){
train_data <- points[fold != i,]
test_data <- points[fold == i,]

width <- seq(min(coords[, 'X']), max(coords[,'X']), length.out = grid_dim)
height <- seq(min(coords[, 'Y']), max(coords[,'Y']), length.out = grid_dim)
train_grid <- expand.grid(x = width, y = height)
train_grid_sf <- st_as_sf(pH_grid, coords = c('x', 'y'), crs = st_crs(pH_points))

train.vgm <- variogram(formula, train_data)
train.fit <- tryCatch(fit.variogram(train.vgm, model = vgm(1, model = 'Exp', nugget
if (length(train.fit) > 1) {
test_k <- krige((PH) ~ 1, train_data, train_grid_sf, model=train.fit, debug.level
diff = st_join(test_data, test_k, join = st_nearest_feature) %>%
mutate(diff = PH-var1.pred) %>% select(diff)

rms <- sqrt(mean(diff$diffˆ2))
rms[i + ((j-1) * k)] <- rms

} else {

#test	 <-	 optimize(k_rms,	 upper	 =	 1500,	 lower	 =	 250,	 points=pH_points,	 formula	 =	 PH~1,	 k	 =	
#print(test)	

19

25% 50% 75% 100%

[1] 0.3977

Deliverable 8:

Did anisotropy improve the kriging model? Briefly explain your answer.

20

Use CoKriging

There are many different types of kriging. Here we will examine the use of cokriging. Like kriging, cokriging is a
stochastic interpolator that is exact if the data has no measurement error, and smooth if it has measurement
error. It can use information from multiple data sets.

0.20 1000

0.15
800

600

0.10

400

0.05
200

10000 30000 50000

distance

10000 30000 50000

distance

se
m

iv
ar

ia
nc

e

se
m

iv
ar

ia
nc

e

#	 Determine	 Bounds	

	

	

	

21

10000 20000 30000 40000 50000

distance

#	 Make	 Cross	 variogram	
g <- gstat(NULL, id = "PH", form = PH~1, data=pH_points)
g <- gstat(g, id = "ELEV", form = ELEV~1, data=pH_points)
v.cross <- variogram(g)

#	View	Cross		variogram	
plot(v.cross)

#	Fit	variogram	
g <- gstat(g, id = "PH", model = ph.fit, fill.all=T)
g <- fit.lmc(v.cross, g)

plot(variogram(g), model=g$model)

PH

PH.ELEV ELEV

se
m

iv
ar

ia
nc

e

−
2

.0

−
1

.0

0.
0

0.
00

0.
05

0.
10

0.
15

0.
20

0
20

0
60

0
10

00

22

10000 20000 30000 40000 50000

distance

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

#		 Interpolate		 pH		 onto		 new		 grid	
krig <- predict(g, pH_grid_sf)

PH

PH.ELEV ELEV

se
m

iv
ar

ia
nc

e

−
2

.0

−
1

.0

0.
0

0.
00

0.
05

0.
10

0.
15

0.
20

0
20

0
60

0
10

00

#			Rasterize			Results	
krig_ras <- interpolate(raster(study_area, res = 1000), g)

#	Mask		and		plot		Raster	
krig_mask <-mask(krig_ras$PH.pred, study_area)
plot(krig_mask)

23

7.2

7.0

6.8

6.6

250000 300000 350000 400000 450000

diff

 cat("FRM: ", sqrt(mean(diff$diffˆ2)))

FRM: 0.3129141

54
40

00
0

54
80

00
0

55
20

00
0

−
0

.5

0.
0

0.
5

#	 Calculate		 Error	
diff = st_join(pH_points, krig, join = st_nearest_feature) %>%

mutate(diff = PH-PH.pred) %>% dplyr::select(diff)

plot(diff, pch = 17)

24

Deliverable 9:

Did using elevation data result in an improved prediction surface? Briefly explain your answer.

