GEOG 204 - Tutorial 8

3D Visualization

In this tutorial we will explore 3D visualization. Although we have not gone over this subject during the course, it is helpful GIS functionality to be aware of. In this case we will use it to visualise TIN and Voronoid Diagrams, which are also referred to as Thiessen Polygons.

- 1. Open ArcGIS Pro.
 - On the Insert tab add New Global Scene
 - Add the temperature dataset and move it from the 2D layers group to the 3D layers group
 - Right Click >> Properties >> Elevation
 - Features are: At an absolute height
 - A field: ELEV

Layer Properties: temperature

General Metadata	Features are At an absolute height 🔻
Source	Additional feature elevation using
Elevation	Geometry z-values
Selection	
Display	A field ELEV
Cache	Vertical Exaggeration 1.00
Definition Query	
Time	Cartographic offset 0.00
Range	
Indexes	Vertical units Meters *
Joins	
Relates	
Page Query	

• On the Map tab, select the Explore button to help you navigate around the scene. For example, if you hold down B, will enable the cursor such you can navigate around the scene in 3D

• Use the Navigator in the bottom left hand corner of the Scene to arrange your view to have a horizon scene as shown below. Yes, it is finicky to work with.

- You will notice that the elevations do not stand out much -- t is just the nature of the landscape so will exaggerate them to see the differences better.
- 2. Right on the temperature layer
 - Properties >> Elevation >> Vertical exaggeration = 20
 - •

- 3. Now we are going to do some interpolation. You will recall TIN, DEM and Thiessen polygons in the lectures
 - In the Geoprocessing toolbox search for Create Thiessen Polygons. Make sure the Output Fields is set to All Fields

Geoprocessing	~ ¤ ×
Create Thiessen Polygons	\oplus
Parameters Environments	?
Input Features	
temperature v 🖬	/ × .
Output Feature Class	
ThiessenPolygons	
Output Fields	
All fields	~

- Drag the Thiessen polygons layer to the 3D layer group and set its height to be based on ELEV attribute with an exaggeration of 20. What do you notice about the Thiessen Polygons?
- 4. In the Geoprocessing Toolbox search for Create TIN (3D Analyst Tools)
 - Specify the name of the output file, Coordinate system select, temperature, Height field is ELEV

Geoprocessing			~	џ	×
Create TIN				(Ð
Parameters Environr	nents			(?
Output TIN TempTIN] 🕻	-
Coordinate System NAD_1983_UTM_Zone_14N ~					Ð
Input Feature Class	0				
Input Fe	atures	temperature	~] 🕻	
Heigh	t Field	ELEV			~
î	Туре	Mass_Points			~
Tag	g Field	<none></none>			~
		(+) Add	ano	the	er
Constrained Delau	nay				

- Next use the TIN Edge (3D Analyst Tools) function to create TIN network. Edge type to be Data Area and the TIN layer created above as the Input TIN
- 5. Next open a new Scene Project and visualize the elevation data for the city of Prince George. Show me your work.