Remote Sensing of Glaciers Chapman Glacier, Ellesmere Island, Nunavut – ASTER 2000

Landsat Images (since 1972 / 1984) Most glaciers are remote

Note mark of Little Ice Age (LIA) ~ 1850

Castle Glacier- SW of McBride

Note late lying snow cover Muskwa-Kechika-northern BC

Spectral characteristics of snow and ice

TM543

The spectral curve explains why glaciers look blue-green on a SWIR-NIR-Red composite (why?) .. and enables distinguishing snow/ice from clouds compared to a normal colour composite.. (why?)

Mid-IR/Near-IR-Red Red-Green-Blue Glacier extraction relies on this SWIR- Red (visible) contrast

http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=Aletsch

1. Classification

a. Unsupervised classification: McBride OLI image including Kristi Glacier (SW corner

Image classification - Unsupervised ... does not really work due to topography

These orange-pink clusters, not the brown one (forefield) – why so many - 6?

b. supervised classification

international journal of remote sensing, 1999, vol. 20, no. 2, 273 ± 284

Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and DEM data

R. W. SIDJAK and R. D. WHEATE

Geography Program, Faculty of Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada

(*a*) Principal components PC2 and PC4 based on analysis of sub-scene (7 bands)^(b)

(a) Principal components PC3 and PC4 based on analysis under a mask isolating glacier surfaces

(Supervised) Classification trials were performed with the following band combinations:

- 1. TM bands 3, 4, and 5
- 2. Band ratio TM4/TM5 and NDSI
- 3. Masked principal components 1 + 4
- 4. Masked principal components 2 + 4
- 5. Masked principal components 2 + 4 + TM-4/TM-5 ratio + NDSI BEST !

Glacier facies are natural zones of distinct variations of snow and ice which are formed as a result of the evolution of precipitated snow to ice, the cyclic process of ablation, refreezing, and eventually its melt. 2. Normalised Difference Snow Index (NDSI) = (G-SWIR)/(G+SWIR)

NDSI (TM) = (2-5)/(2+5)

NDSI (OLI) = (3-6)/(3+6)

Method: use as threshold value or input in classification

Note: its difficult to distinguish between snow covering glaciers and late lying snow on land except by size (sieve) and perhaps modelling from location

3. Ratio image - thresholding

.... NIR/SWIR band ratio TM 4 / 5 (snow/ice >1.0) Red/SWIR TM 3/5 (snow/ice > 2.0) ... 'better' for shadow areas

Snow and ice: very high in visible, very low in SWIR Ratio = Visible (Red) to SWIR captures snow/ice almost exclusively - some issues with silt-laden water, shadowed glaciers and debris cover

Puncak Jaya, Indonesia 4°S, 137°E elevation m. asl: 4884m

This is the highest peak in Asia, using distance from the centre of the Earth

Landsat 1992

2 km

Red/SWIR ratio

Threshold value 2.0

Convert bitmap to polygon

Vector smoothing

The cordilleran glaciers of western Canada- mapped at UNBC, 2008

2007-08: We used 50 Landsat scenes and applied the TM 3/5 ratio, with threshold >2.0 ~15,000 glaciers covering ~ 25,000 km²

Mapping of Glaciers

km

-

Challenges:

- 1: Clouds
- 2: Late lying snow
- 3: Internal rocks
- 4: Pro-glacial lakes
- 5: Debris-cover
- 6: Ice divides

Improved Glacier Outlines

Svalbard subset overview (bands 8 4 3)

Resulting corrected outlines

Later in the year: less snow, more shadow

opernicus

Approach: map with July

scene, correct with September

Svalbard: 80 N

Challenges

1. mixed pixels \rightarrow lower threshold

2. shadows → lower threshold

3. Misclassified lakes → higher threshold

- 4. Debris Cover ?
- 5. Late snow ?

Lab 7: Resthaven Icefield, Willmore Wilderness, AB Tricky parts – shadows, debris covered ice

Resthaven Icefield, Willmore Wilderness, AB Tricky parts – shadows, debris covered ice

Resthaven Icefield, Willmore Wilderness, AB (Lab 7) Pan layer (15m resolution) – greater detail visible in shadows

Ratio Improvements with Landsat 8/9 (2013) and Sentinel (2015)

- taking advantage of higher resolution Pan layer - switch Pan for Red

- Landsat 5 TM: Red / SWIR 30m (glaciers 1984-2011)

- Landsat 8/9 OLI: VNIR/SWIR 30m PAN 15m (glaciers 2013-2024) PAN / SWIR – ratio adopts 15m pixels (add SWIR to Pan file)

- Sentinel 2A/B MSI: VNIR: 10m SWIR 20m

Red / SWIR - ratio adopts 10m pixels (add SWIR to VNIR file)

16 bit data: we may need to have a lower threshold value e.g. 1.75

Remote Sensing of Glaciers

Image processing can be used to map:

a. Glacier extents (e.g. Lab 7)

- b. Surface characteristics (e.g. accumulation-ablation)
- c. Glacier movement /velocity

d. Animation - image series (change detection lab/lecture)

e. Elevation change / Volume loss (DEM/change lab/lecture)

4. Glacier velocity

Klinaklini Glacier

Annual movement ranges from 30 - 500 m / year mostly in summer) = ~1m / day in summer

Length of vector proportional to change between sequential Images Oct 2001/Sep 2002

Uses ENVI COSI-CORR

Example next 2 slides

SPOT high resolution imagery 2.5m

Scud Glacier (2002)

Scud Glacier (2003)

0.5 km