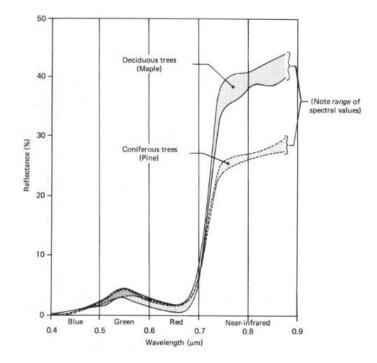
Band ratio review – in a nutshell

Band ratioing = Divide the DNs in one band by the DNs in another band for each pixel to create a new data channel

Purposes:

a. Spectral slope enhancement – highlight the difference between two adjacent bands (cancel out or reduce what is similar)


- b. Suppress / reduce topographic effect shadow
- c. Include ratio as channel input for classifications
- d. Use for thematic analysis / display

Related image arithmetic:

- Band addition, subtraction, multiplication

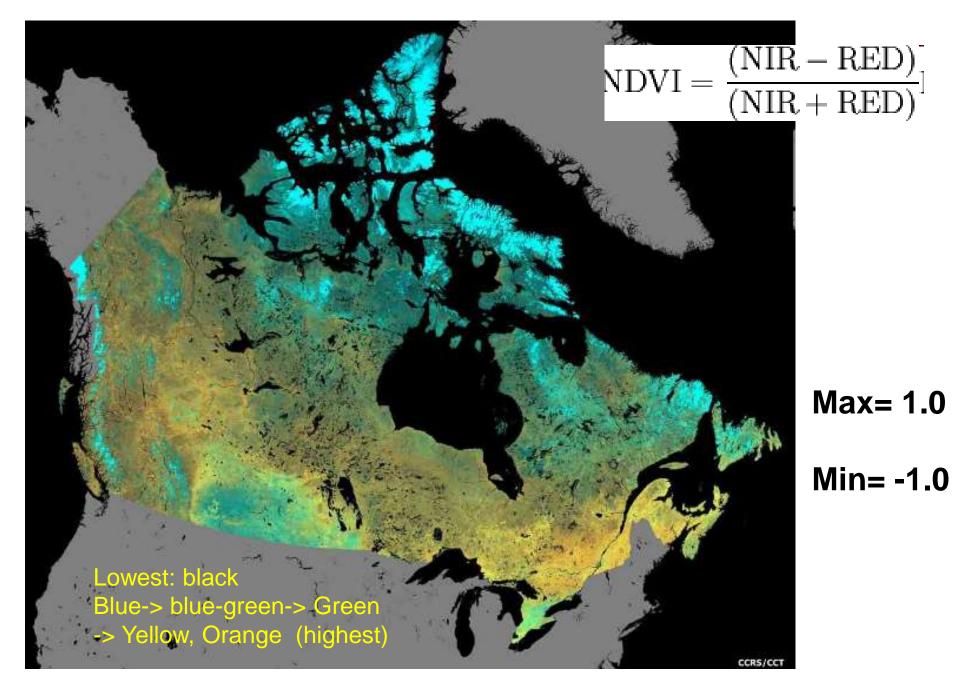
Catalyst Focus tools: Raster calculator, or RTR, ARI algorithms

The NIR/ Red ratio highlights the rapid - increase in NIR reflection by healthy veg.

Indices

Ratios

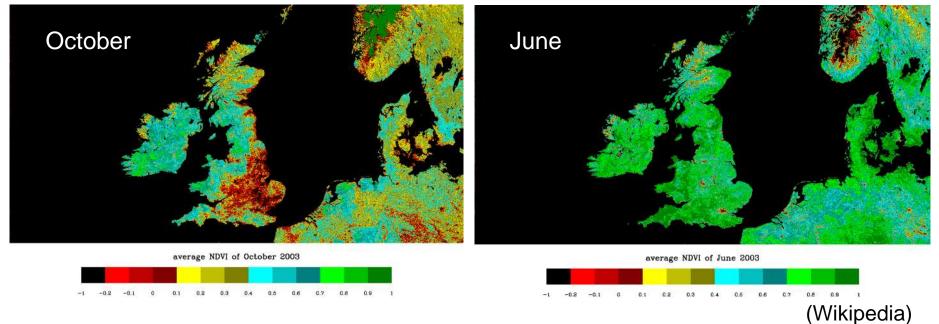
... enhance albedo contrasts by reducing inter-band similarities


e.g. Near-IR / Red ... to identify vegetation

Ratio Vegetation Index (RVI) = NIR / Red > 1 = vegetated * RVI can create high values (if Red Band DN is low)

Difference Vegetation Index (DVI) = NIR-Red > 0 = vegetated * DVI is heavily influenced by different lighting

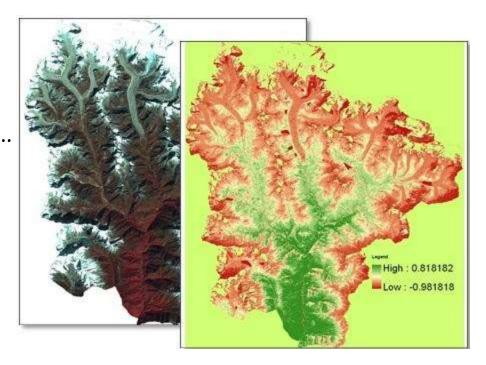
'Combining' these two creates the most common vegetation index, involving subtraction, addition and division ... and 'normalization'


Normalised Difference Vegetation Index: NDVI

First developed using AVHRR and Landsat (ERTS) MSS sensors (Rouse et. al 1973)

NDVI = (NIR-Red) / (NIR + Red) – index values range from -1.0 to +1.0

Vegetation indices enhance the vegetation signal, while minimizing the impact of solar radiation and bare soil – first used to map spring green-up The standard range -1 to +1 enables comparison between places and time



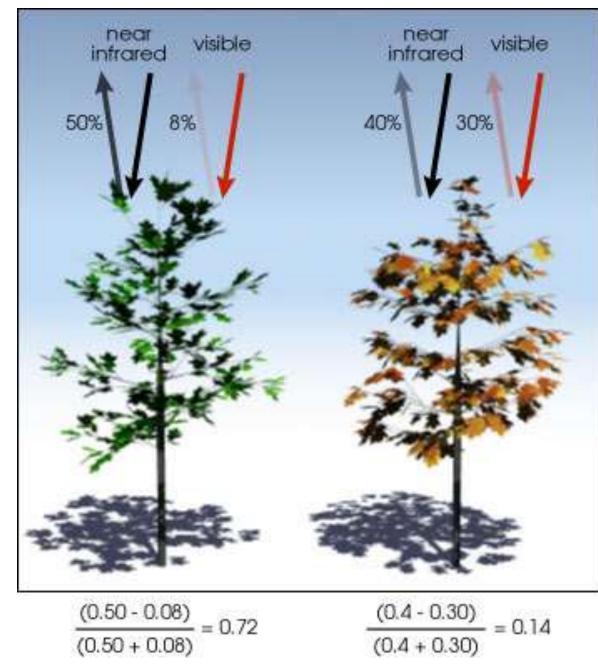
Landsat browser https://earthnow.usgs.gov/observer Sentinel browser https://apps.sentinel-hub.com/eo-browser

Normalised Difference Vegetation Index NDVI

Division compensates for differential illumination and Normalisation yields values -1 to 1 .

= a close estimate of biomass also referred to as greenness

Negative values of NDVI (values approaching -1) correspond to water.
 Values close to zero (0 to 0.1) = barren areas of rock, sand, or snow.
 low, positive values represent shrub and grassland (~ 0.2 to 0.5),
 high values indicate temperate and tropical rainforests (0.6 to 0.9)


Highest NDVI values in different environments

Ecosystem	Typical NDVI values	Location	References
Boreal forest	0.6-0.8	Alaska	Parent and Verbyla, 2010
Temperate forest	0.3-0.7	France	Pettorelli et al., 2006
Coastal rainforest	0.88-0.92	Solomon Islands	Garonna et al., 2009
Alpine pastures	0-0.35	Italy	Pettorelli et al., 2007
Annual grassland	0.15-0.45	California	Gamon et al., 1995
Desert	0.06-0.12	Sinai, Egypt	Dall'Olmo and Karnieli, 2002

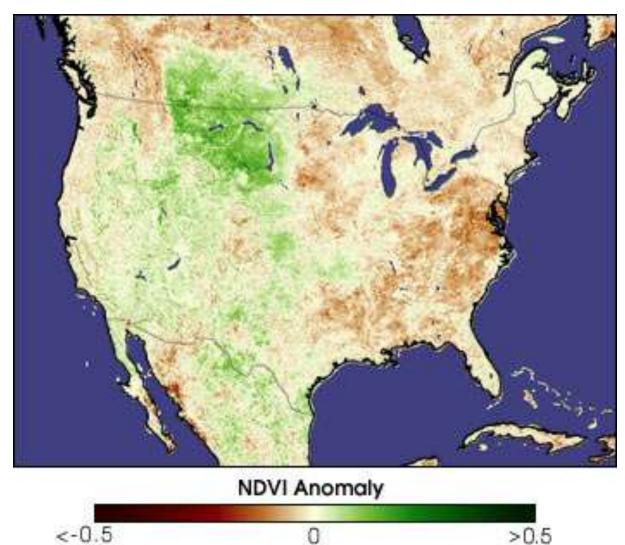
Table 1 - Typical NDVI values for different ecosystems (Pettorelli, 2013)

https://medium.com/regen-network/remote-sensing-indices-389153e3d947

Annual and interannual changes in NDVI

Canada

NDVI values increase with 'green-up' in spring Peak in mid-late July .. start to drop in August, and into the fall


From mid-summer

- -> Near-IR decreases
- -> Red increases

(until leaf fall)

->Implications for wildlife

habitat and movement

Monitoring monthly and yearly changes and anomalies in NDVI

Long term changes: may represent global impacts e.g. large scale forest change clearance / regrowth

The difference between the average NDVI for a particular month of a given year (such as August 1993, above) and the average NDVI for the same month over the last 20 years is the NDVI anomaly. In 1993, heavy rain in the Northern Great Plains led to flooding in the Missouri River. The resulting exceptionally lush vegetation appears as a positive anomaly (green).

Many satellite sensors have red and Near IR bands to assess global vegetation

Table 1. Low or no-cost satellite sensors and data streams utilized for land surface phenology studies¹

Sensor	Satellite	Overpass/ Orbit Frequency	Data Source (terrestrial data)	Data Record (years)	Spatial Resolution(s)	Processed Time Step	Latency
AVHRR	NOAA series	Daily	USGS/EROS ²	1989- present	1 km	1-week, 2-week	~24 hours
AVHRR	NOAA series	Daily	NASA Ecocast ¹	1982-2013	8 km	Twice monthly	N/A
MSS	Landsat 1-5	18 days	USGS/EROS ²	1972-1992	79 m	Distributed by scene	N/A
тм	Landsat 4-5	16 days	USGS/EROS ²	1982-2011	30 m	Distributed by scene	N/A
ETM+	Landsat 7	16 days	USGS/EROS ²	1999- present	30 m	Distributed by scene	~1-3 days
Vegetation	SPOT	1-2 days	VITO⁴	1999- present	1.15 km	10-day	~3 months
MODIS	Terra	1-2 days	LPDAAC ⁵	2000- present	250 m, 500 m, 1 km	8-day, 16- day	~7-30 days
MODIS	Aqua	1-2 days	LPDAAC ^S	2002- present	250 m, 500 m, 1 km	8-day, 16- day	~7-30 days

MODIS: MODerate-resolution Imaging Spectroradiometer

36 spectral bands ranging in wavelength 0.4 μ m to 14.4 μ m and at spatial resolutions 250m to 1km. Swath: 2330 km Earth covered 1-2 days

Designed to combine some of the characteristics of AVHRR and Landsat TM

= 'Superspectral' (vs Multispectral)

MODIS is THE main medium resolution EO satellite sensor, but nearing end of life –

gradually replaced by the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi (Finland)

Reflected Solar Bands			Emissive Bands
Aggregrated 250 m	Aggregrated 500 m	1 km	l km
Band 1 (620-670 nm)	Band 3 (459-479 nm)	Band 8 (405-420 nm)	Band 20 (3.660-3.840 µm)
Band 2 (841-876 nm)	Band 4 (545-565 nm)	Band 9 (438-448 nm)	Band 21 (3.929-3.989 µm)
	Band 5 (1230-1250 nm)	Band 10 (483-493 nm)	Band 22 (3.939-3.989 µm)
	Band 6 (1628-1652 nm)	Band 11 (526-536 nm)	Band 23 (4.020-4.080 µm)
	Band 7 (2105-2155 nm)	Band 12 (546-556 nm)	Band 24 (4.433-4.498 µm)
		Band 13L (662-672 nm)	Band 25 (4.482-4.549 µm)
		Band 13H (662-672 nm)	Band 27 (6.535-6.895 µm)
		Band 14L (673-683 nm)	Band 28 (7.175-7.475 µm)
		Band 14H (673-683 nm)	Band 29 (8.400-8.700 µm)
		Band 15 (743-753 nm)	Band 30 (9.580-9.880 µm)
		Band 16 (862-877 nm)	Band 31 (10.780-11.280 µm)
		Band 17 (890-920 nm)	Band 32 (11.770-12.270 µm)
		Band 18 (931-941 nm)	Band 33 (13.185-13.485 µm)
		Band 19 (915-965 nm)	Band 34 (13.485-13.785 µm)
		Band 26 (1.360-1.390 µm)	Band 35 (13.785-14.085 µm)
			Band 36 (14.085-14.385 µm)

MODIS (Moderate-resolution Imaging Spectroradiometer)

MODIS SPECIAL THEMES

MODIS Team Member	MODIS Product
E. Vermote	Surface Reflectance
Z. Wan	Land Surface Temperature
A. Strahler JP. Muller	BRDF/Albedo
A. R. Huete/C. O. Justice	Vegetation Indexes
R. B. Mynem/S. W. Running	LAL/FPAR
C. O. Justice/Y. J. Kaufman	Fires/Burned Area
D. Hall	Snow/Ice/Sea Ice
J. R. G. Townshend/A. Strahler	Land Cover/Land Cover Change
S. W. Running	PSN/NPP

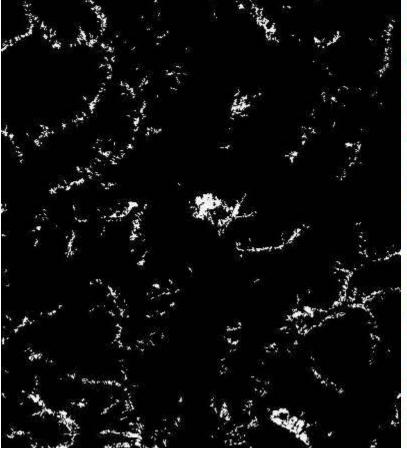
EarthExplorer datasets

and the second second second	59
HOMM	
RIBERY	
Land Cover	
🗄 Landsat 🚨	
LCMAP	
RASA LPDAA	C Collections
# ASTER CA	lections
HASTER OF	obal Emissivity Datasets
H MODIS B	RDF and Albedo - Vil
# MODIS G	ross Primary Productivity - V6
H MODIS LA	UFPAR - VE
H MODIS La	nd Cover - VE
# MODIS La	nd Surface Reflectance - VE
# MODIS La	nd Surface Temp and Emiss - V8
# MODIS M	ALAC + VI
# MODIS N	et Evapotranspiration - V6
# MODIS R	idiation VG
IT MODIS TR	ermal Anomalies and Fire - Ve
# MODIS Ve	getation Indices - V6
H MODIS W	eter Mash - VE
ECOSTRE	E\$\$
# GFSAD C	allections

Launched by NASA in 1999 on the <u>Terra</u> (EOS AM) satellite, and in 2002 on the <u>Aqua</u> (EOS PM) satellite. Terra: 10.30am descending Aqua: 1.30pm ascending

Special sensors for NDVI

<u>SPOT 5</u> has extra bands / wide sensor in visible/NIR with 1 km resolution to capture a repeat 2400 km swath for global coverage


MODIS and NOAA-AVHRR have 250m/1000m red /near-IR bands for NDVI

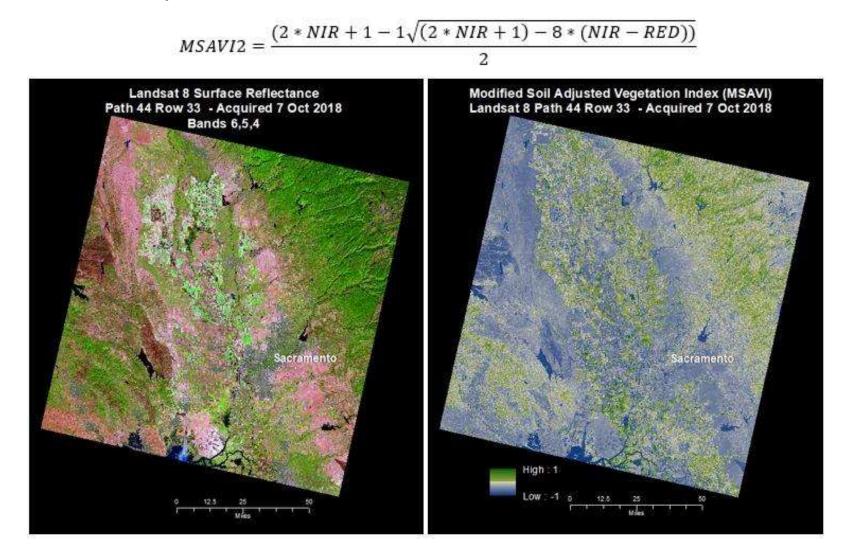
NDVI is used to measure vegetation amount or biomass, in regional and global estimates. NDVI is directly related to photosynthesis and thus energy absorption of plant canopies

Delineation of Grizzly Bear Habitat in Bute Inlet GEOG357 project

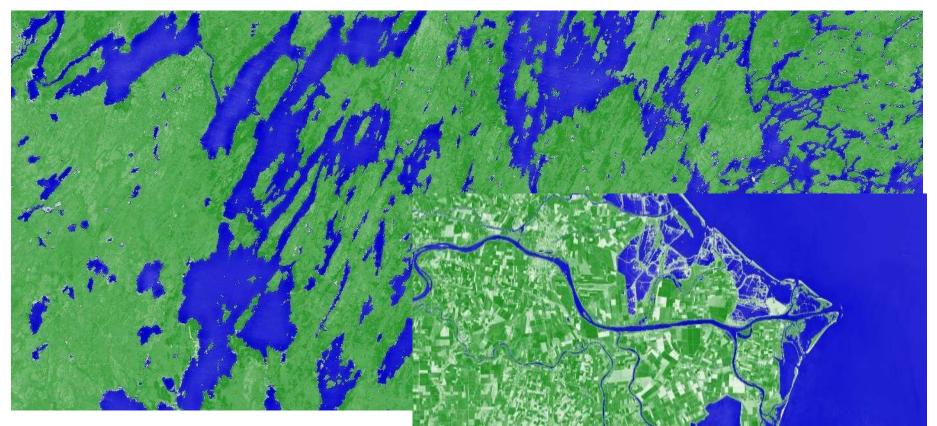
- Assumes bears are attracted to highest biomass areas e.g. avalanche slopes *Sieved NDVI threshold*

http://grayhawk-imaging.com/use-of-ndvi

Example Vineyards Standard NDVI High 'backwards' colour ramp ! Low Soil


GNDVI (NDGI) Green: = (NIR-G) / (NIR+G)

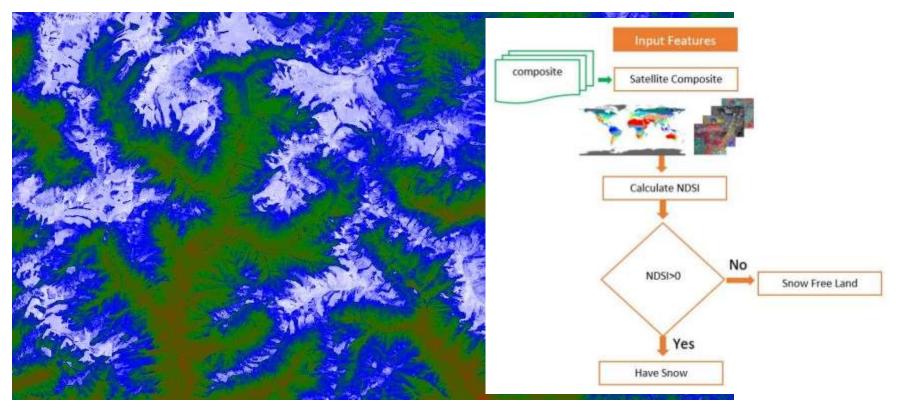
GNDVI is more sensitive to chlorophyll variation in the crop than NDVI. It can be used in crops with dense canopies or in more advanced stages of development while NDVI is suitable for estimating crop vigor during the early stages.


Soil-adjusted Vegetation Index **(SAVI)** = 1.5 * (NIR - R) / (NIR + R + 0.5) Optimised Soil-adjusted Vegetation Index **(OSAVI)** = (NIR - R) / (NIR + R + 0.16)

MSAVI: Modified Soil Adjusted Vegetation Index (MSAVI) minimizes the effect of bare soil on the Soil Adjusted Vegetation Index (SAVI)

NDWI (Water): (Green - NIR)/ (Green + NIR) 1996 - Mapping water - lakes, floods etc.. > 0.2 = water

Also NDMI = (NIR - SWIR1)/ (NIR + SWIR1) Moisture content in leaves (also sometimes referred to as NDWI)

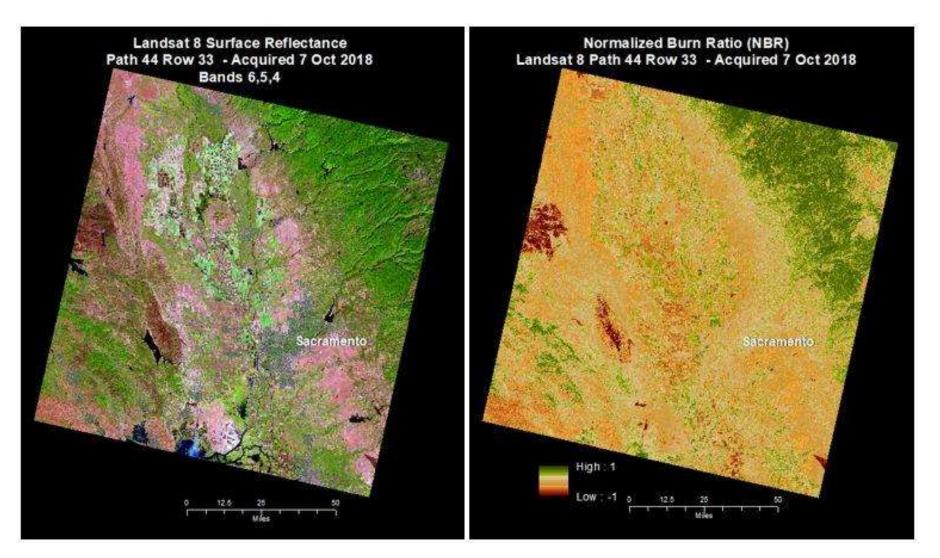

NDWI of Canadian lakes. Acquired on 2020-08-05, Sentinel-hub

NDWI of Italy. Acquired on 2020-08-01

Snow: NDSI = (Green-SWIR) / (Green+SWIR)

NDSI has mostly been used for assessments of

- 1. Snow cover detection and mapping
- 2. Discriminate snow and clouds
- 3. Detect glacier ice in shadowed terrain
- 4. Detect frozen lakes
- 5. Glacier mapping

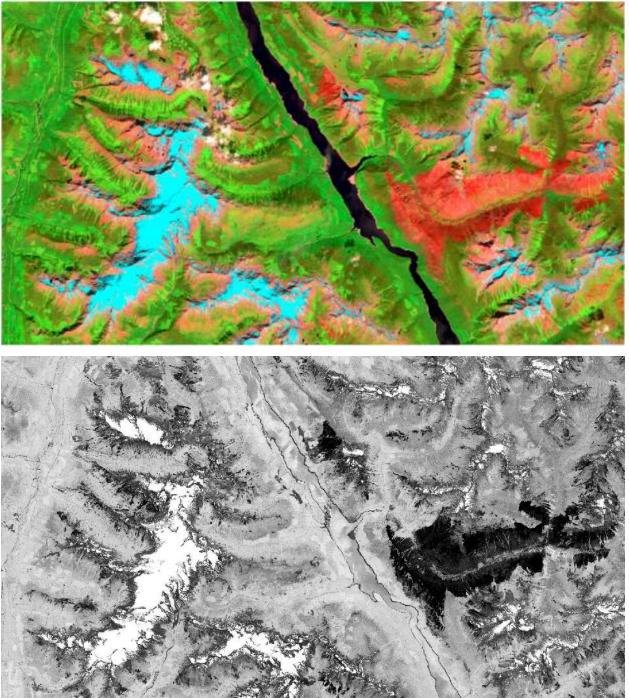


Red Edge índices – Sentinel 2 and Worldview NDRE = (NIR – RED EDGE) / (NIR + RED EDGE) (Normalized Difference Red Edge): It is closely related to NDVI; it enables to identify vigor decreases earlier.

How NDRE map looks on EOSDA Crop Monitoring.

Similar indices: Normalised (Difference) Burn Ratio (Index) NDBI/NDBR (NIR - SWIR2) / (NIR + SWIR2) Landsat TM: NBR = (4-7)/(4+7)

https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio


GEOG 357 projects 2020

Kinbasket Lake August 2018

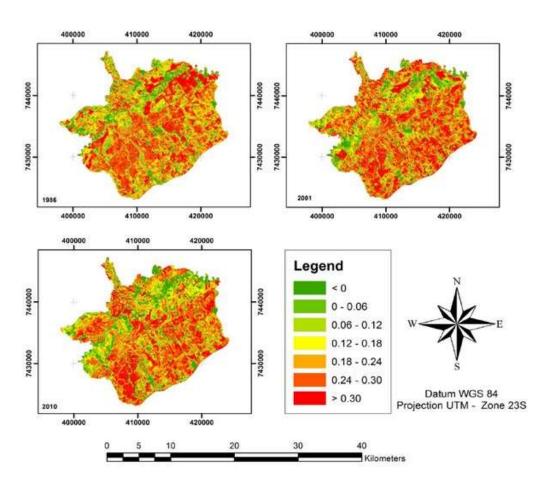
Sentinel 2 MSI Bands: SWIR2, NIR, Red

NDBR: (NIR-SWIR2) / (NIR+SWIR2)

Note: we've found that NBRI does not work as well in drier places e.g. southern BC, as there was limited vegetation beforehand

WV-BI =pute a Normalized Difference Dulit op mack (NDDI).

 $\frac{-BI}{(Coastal + Red Edge)}$ ance Built-up Index


NDBI = (SWIR - NIR) / (SWIR + NIR)

uses the NIR and SWIR bands to emphasize built-up areas.

(=lack of vegetation)

Figure 10. NDBI calculated from the image of TM/Landsat 5 for 1986, 2001, and 2010.

NDBI

https://www.researchgate.net/publication/233629918 A Quantitative Approach for Analyzing the Relationship between Urban Heat Islands and Land Cover

São José dos Campos, Brazil

Summary of Indices

Vegetation and soil: NDVI most common with many variants e.g. NDGI, DVI, SAVI, NRDE, NDBI

Water: NDWI

Snow: NDSI

Burn (fires): NDBR

All have values = -1.0 to +1.0 - store in 32 bit real channel This standardization enables direct comparison for change detection

Many more examples... latest count > 150 ?

https://www.icimod.org/capacity-building/2020/totafg/day2/remote_sensing_indices_pt.pdf

https://medium.com/regen-network/remote-sensing-indices-389153e3d947

https://pro.arcgis.com/en/pro-app/latest/help/data/imagery/indices-gallery.htm

https://www.nv5geospatialsoftware.com/docs/AlphabeticalListSpectralIndices.html

https://www.indexdatabase.de