
### Fall 2024 GEOG 357-3 Introduction to Remote Sensing Instructor: Dr. Roger Wheate



Lectures: Tuesday and Thursday, 10:30 - 11:20 am Lab: Wednesday, 3:00 - 5:50 pm



**GEOG357: Remote Sensing** Roger Wheate, 8-307

wheate@unbc.ca

2024 class (13):

5 Geography

**4** Computer Science

1 each: Forest Ecology/Mgmt, Psychology, Planning (northern/rural), Undeclared

Outline, lectures, labs: <u>http://gis.unbc.ca</u>

Lab assignments / grades: <u>https://moodle.unbc.ca</u>

References: online resources (websites) / library

**RS: the acquisition/analysis of ground-aerial-satellite images** *Textbook definition: "acquiring information from a distance" (no physical contact)* 



# Why Remote sensing may be more 'important' than GIS, especially in Canada ?

Size and remoteness of Canada – cannot be mapped easily

vector data is often quickly outdated e.g. forest cover, urban areas .... while images can be current or more recent

Images are not 'generalized' (pixel size apart) - shows it like it is

➤Many image sources are freely downloadable

➢Most GIS spatial data were created from remote sensing

Images cross administrative boundaries (vector data may stop) .... and (almost) no data blackouts

Satellite image data are collected continuously https://earthnow.usgs.gov/observer Types of remote sensing for Earth Observation (EO)

### Satellite imagery

Low/medium resolution satellites for wide area / whole planet 500m-10km pixels

High res. for regional imagery e.g Landsat (NASA) / Sentinel (ESA) 10-30m pixels

Very high res. for local imagery e.g. 1 metre

### Airborne

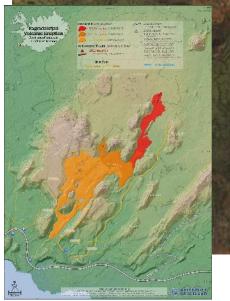
Digital photogrammetry

Lidar

UAV (drones) – photography / LiDAR

GEOG357 focus: Landsat / Sentinel due to size of BC/Canada and archive (1984-2024)

### There are thousands of satellites in space, many of them for Earth Observation (EO)





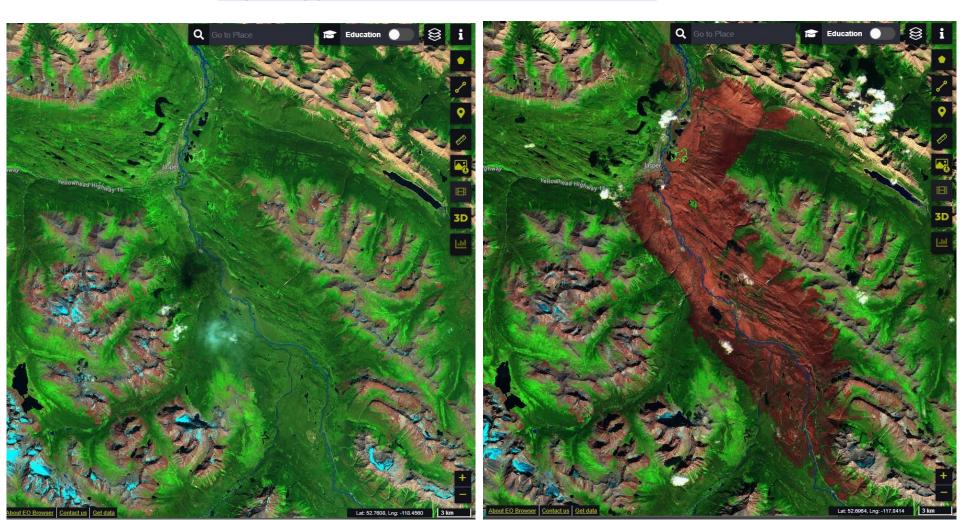
15,000 satellites, 5000 for EO (some thousands no longer operational – satellite debris ) - Enable continuous monitoring of earth surface

https://earthobservatory.nasa.gov/

Fagradalsfjall, Iceland: August 2022 eruption

Geldingadalir (2021 eruption)






### Jasper fire (July 22 2024): Sentinel2 July 20 - August 19

Image combines visible reflectance, Near and Shortwave Infrared Fire, clouds (2%), one month season difference – snow, shadows

See also photos 1910-1920 https://explore.mountainlegacy .ca/stations/show/2732

https://apps.sentinel-hub.com/eo-browser



Early RS – (aerial) photography (>1840): Balloons, US Civil war World War 1: Pigeon with german camera; balloons and planes









### Early to mid- 20<sup>th</sup> century RS milestones

1840: Invention of camera / photography

- **1910s** First use of aerial photography from planes (World War I: photo interpretation)
- **1920s** Development of photogrammetry for mapping
- 1940 Military use of RADAR (World War II)
- 1945-> Main aerial photo mapping programs in Canada
- **1950s** Use of colour photography and <u>infra-red</u>
- 1960 First reconnaissance satellites: <u>Corona</u>
- 1960s First weather satellites: <u>Tiros</u> (1960); Nimbus (1964) (and first digital data transmission from space)

## Why did 'RS' appear in 1960s?

Advent of :

- a. Satellites (Space Race)
- b. Use of non-visible energy e.g. infra-red, RADAR
- extended beyond aerial photography

Remote Sensing coined by Evelyn Pruit American geographer, 1918-2000





### 1970-> RS milestones

1970s: Landsat 1-3 (NASA) - first Earth Observation (EO) satellites

1980s: Landsat 4-5 - the 'next generation' imagery (1984-2011) and first commercial software e.g. PCI (Canada)

1986: SPOT 1 (France)

1990s: more satellites from various countries / India, Europe (ESA)

2000s: corporate high resolution (<1metre) satellites 2005: Google Maps / Earth – global Landsat mosaic 2008: Landsat data freely downloadable (others follow)

2010s: LiDAR and UAVs (drones)

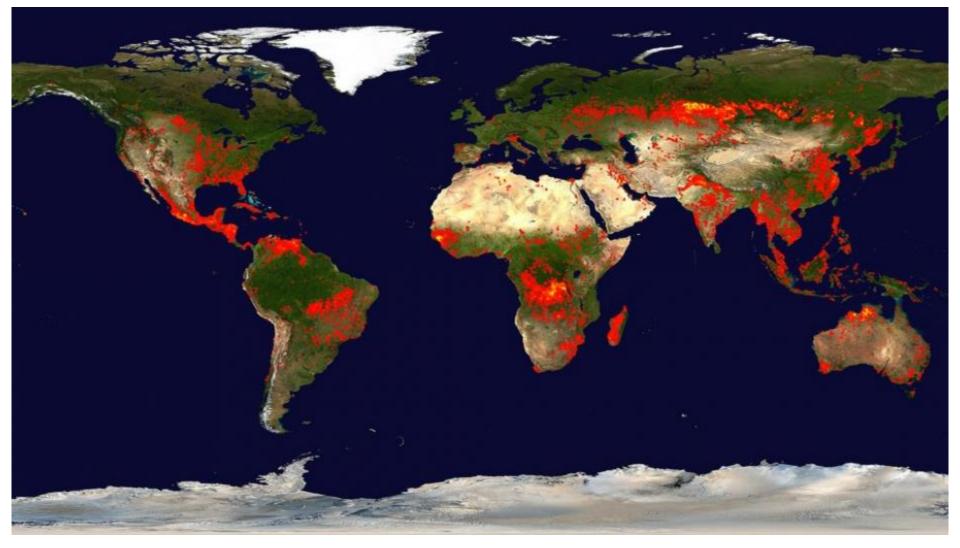
2020s: Online data processing 'in the cloud' e.g Google Earth Engine Free online software options e.g. ESA SNAP

Very high-res example Worldview3 2014 Rainbow Range Chilcotin, BC 31cm





RS in the media myth 1:


"it's so big, you can see it from space"

High resolution satellite imagery (Maxar), 15-30cm Feb 28, 2022; Russian tanks

Ukraine: the new satellite war https://www3.nhk.or.jp/nhkworld/ en/shows/digitaleye

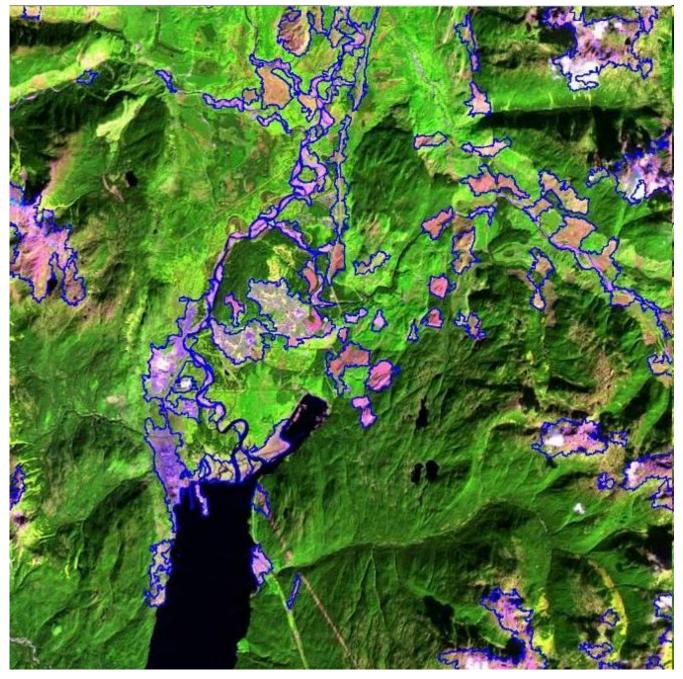


### Fires around the world, May 2019 Example of Global Remote Sensing from free satellite imagery



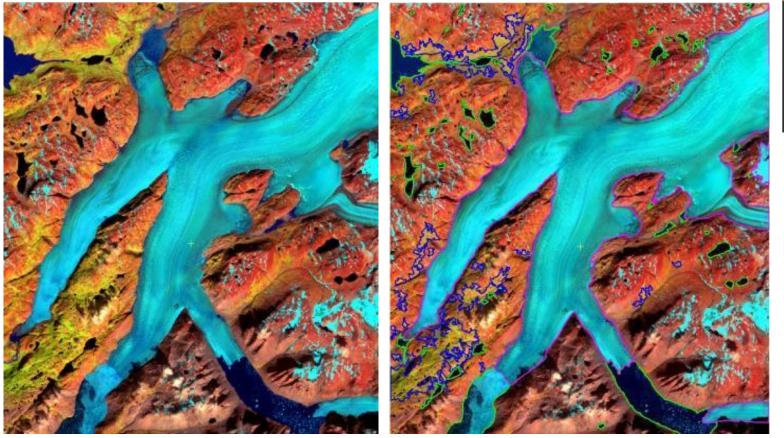
Alabama teenager is using this site to map fires started in Ukraine .. 'OSINT' – Open Source Intelligence – helps show current Russian activity **Myth #2 about remote sensing:** This is a satellite photograph, but most are NOT e.g. the previous slide images were <u>captured</u> from scanners, not a camera (not 'taken')



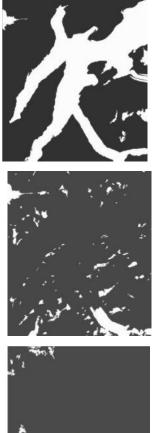

Exceptions e.g. ISS: Alberta, BC / Rocky Mountain Trench, from International Space Station, 2014 Aerial and drone digital photography – cameras, not scanners (but some planes do use scanners) Traditional mapping from aerial photography and GIS layer creation – manual digitising



Canada was mapped this way 1945-2012 = > 13,300 map sheets at 1:50,000 scale also including thematic layers e.g. forestry, geology


Digital remote sensing imagery – auto-generation of GIS layers – e.g. polygon data

Sample from GEOG357 project: non-forested layer




#### GEOG357 project to extract polygon layers

Extraction of Glaciers, Water, and Vegetation - the Southeast Coast of Greenland



Threshold images for ice, water and vegetation derived from ratios

