GEOG 413/613

LECTURE 2

1

Sampling

- When a phenomenon occurs, it may be due to
 - a random process
 - a systematic process
 - Statistical analysis helps to determine the nature of the process
- Processes may be linear, non-linear
- Sometimes processes may be acting in combination

2

Sampling

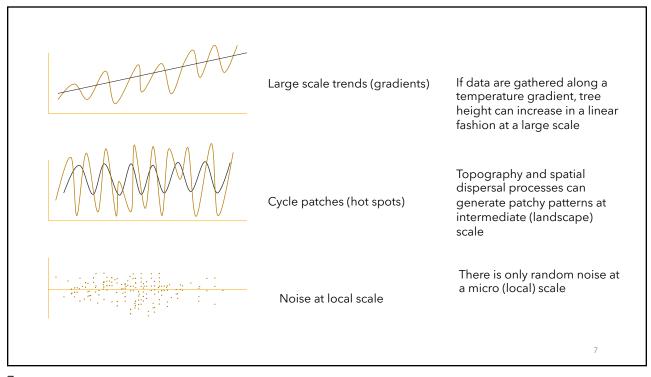
- Spatial Sampling
 - A biogeographer selects locations to examine environmental change in a national park
 - Medical geographer chooses to examine hospital use patterns in certain neighborhoods
- Non-spatial sampling
 - a geographer conducting a study on attitudes towards landslides may choose a nonspatial list of households in the area
- A study on housing quality may be taken from nonspatial list e.g. tax rolls or a spatial source a map

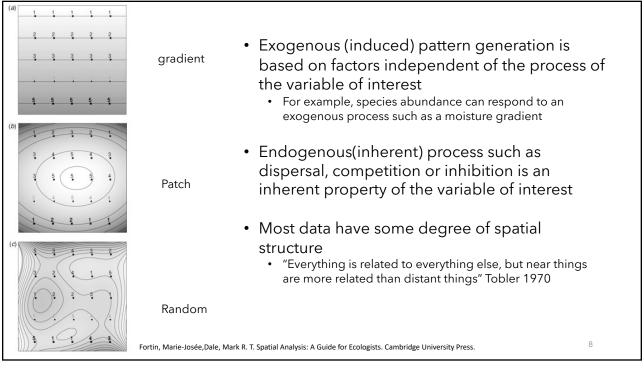
3

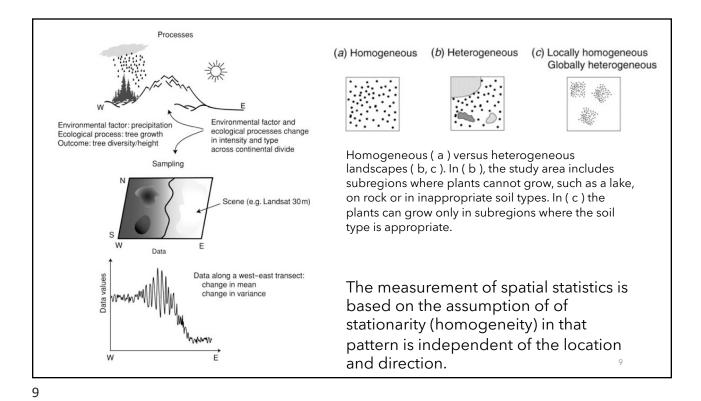
3

Sampling

- Advantages
 - It often a necessity in geography because population is too large
 - Efficient and cost effecting methods of data collection
 - Can provide highly detailed information
 - Can provide highly accurate information
 - Allows repeated collection of data (e.g. at specific times of the year)


4


Process, Pattern and Sampling

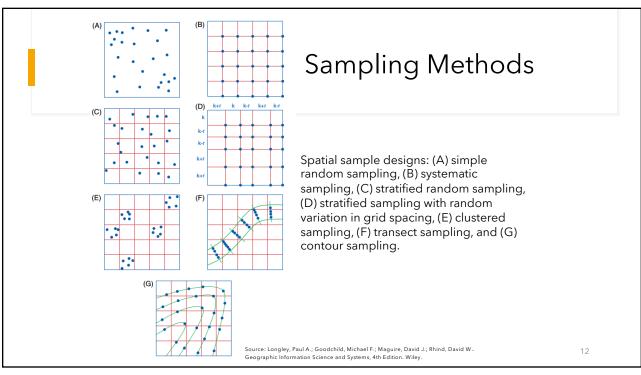

- In ecological studies the match between pattern and process is far from perfect
 - Changes in process intensity can create different patterns
 - Different process can create the same pattern signature
- A spatial pattern is a snapshot in time reflecting a single process or multiple processes at the given time
- Ecological data are a result of embedded and confounded processes evidenced as
 - Trends at larger scales
 - Patchiness at intermediate scales
 - Randomness/noise at small scales

5

Spatial Dependence: Topography, Drainage, Soil		
Spatial Autocorrelation: Vegetation a Vegetation b Vegetation c Vegetation d Vegetation e	Spatial Autocorrelation Vegetation v	Spatial Autocorrelation Vegetation a Vegetation b Vegetation c Vegetation d Vegetation e
Fire ————	Fire Drought Grazing Insect outbreak	Fire Drought Grazing Insect outbreak
Vegetation a: trend Vegetation b: patchy Vegetation c: random Vegetation d: patchy Vegetation e: patchy	Vegetation v: patchy ←	Vegetation a: trend + patchy Vegetation b: repeated patches Vegetation c: patches at two scales Vegetation d: patchy Vegetation e: repeated patches
One process resulting in several patterns	Several processes resulting the same pattern	Several processes resulting in several patterns

Sampling Methods

- Any sampling design for studying processes, imposes an arbitrary
 - template
 - filter
 - · segmentation
- Selecting a representative part of a population for statistical analysis;
 - · various designs of sampling can be applied
 - random sampling
 - · systematic sampling
 - · stratified sampling
 - Within the above designs, one may decide on
 - point
 - line
 - · or area method


10

Sampling

- Provides knowledge about a whole population
 - i.e. make inference about a population from the sample data
- Larger sample sizes are more accurate representations of the whole
 - Large samples are costly: time, labour
 - Can be wasteful since we can statistically infer from appropriate samples
- A sampling strategy with the minimum bias is the most statistically valid

11

11

Random Sampling

- Random sampling: each member of the population has an equal chance of being selected
 - Advantages:
 - Can be used with large sample populations
 - Avoids bias
 - Disadvantages:
 - Can disproportionately represent some parts of the population at the expense of others

13

13

Systematic Sampling

- Systematic Sampling: Samples are chosen at regular intervals
 - Sample locations are evenly distributed for example every two metres along a transect line
 - systematic sampling implies a regularly spaced grid
 - Advantages:
 - It is more straight-forward than random sampling
 - Provides a good coverage of the study area
 - Disadvantages:
 - It is more biased: not all points have an equal chance of being selected
 - It may lead to over or under representation if there is periodicity in the data (e.g. sampling at the same interval as the location of erosion barriers along a beach. Or a city road grid)

14

Stratified sampling

- Stratified sampling: used when the parent population is made up of sub-groups that of interest.
 - Divide the sampling design into strata(classes), and then select a sample from each stratum
 - The strata are defined so that individuals inside each class are similar based on the characteristic believed to influence the phenomena

15

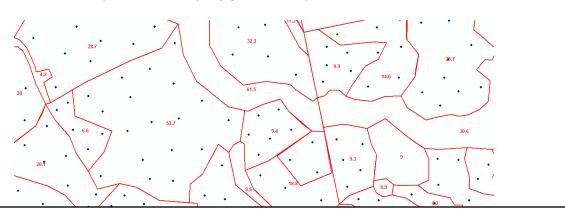
15

Stratified sampling

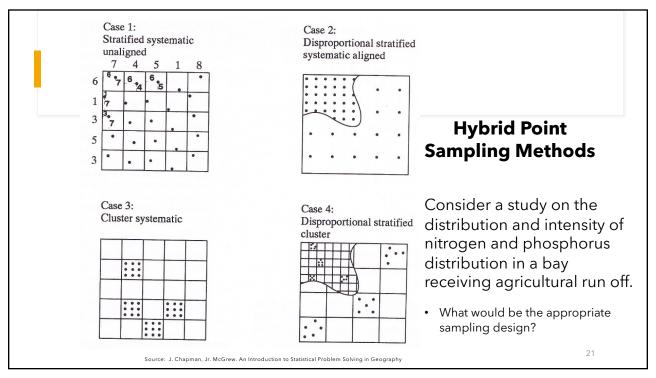
- Advantages:
 - If the proportions of the subgroups are known, the results are representative of the whole population
 - Correlations and comparisons can be made between subgroups
- Disadvantages:
 - The proportions of the subgroups must be known

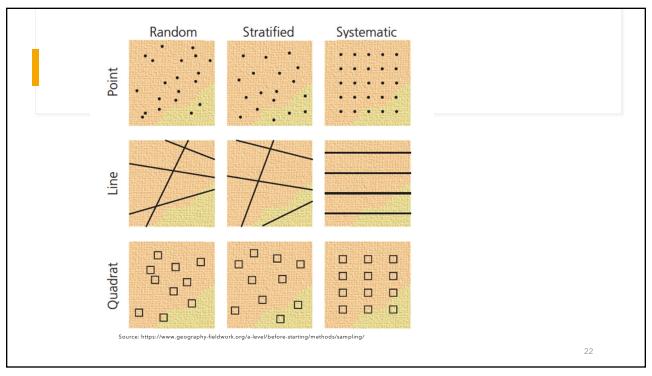
16

Air Photos for Stratified Sampling


- Looking for distinct, uniform areas
 - Crown size (age), harvest history
 - Hardwoods (gray) and softwoods (green)

17


Stratified Sampling


- Generate sample points randomly
 - X points per area, e.g. 1 point every 3 hectares
 - Each point tied to polygon = unique stand

Simple random Systematic point sample point sample Distance interval Randomly selected starting **Point Sampling** Case 3: Proportional stratified point sample Disproportional stratified **Methods** point sample Stratum 1 Stratum 1 (nonwetland (nonwetland Stratum 2 Stratum 2 (wetland (wetland area) Random point sample within clusters (two-stage cluster sample)

Sampling: some considerations

- the number of observations (sample size) at least 30. The more the better
- the size of the study area (the extent);
- the size (granularity) and shape of the sampling units
- the sampling strategy or spatial layout of the sampling units used to collect the data
- the spatial lag (spatial distance) among sampling units

23

23

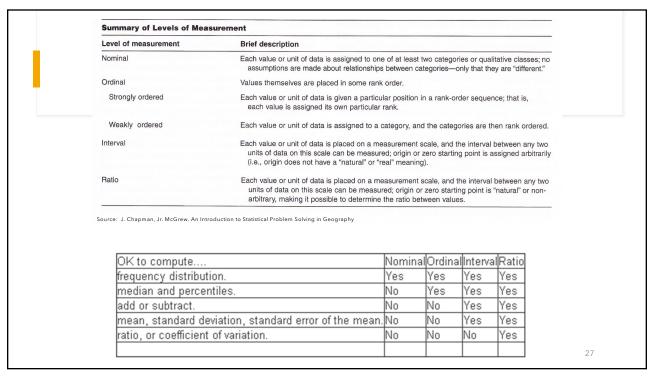
Declustering

- Point samples may be unduly clustered spatially, for a variety of reasons
 - samples from boreholes and wells may provide the basis for a chemical analysis of groundwater sources. The distribution of boreholes is often clustered
 - Geological and hydrographic data collection is often in localized areas, with sparse sampling elsewhere.
 - Practical constraints, such as access in built-up or secure zones may also dictate sampling schemes that exhibit strong clustering

24

Declustering

- Declustering is the removal of the known or estimated adverse effects of clustering in order to obtain a better representation of population data
- Procedures involving adjusting the sample before futther analysis
 - Defining a grid over sampled points
 - Defining a grid over sampled points and use point density as weighting function
 - Use of voronoid regions


25

25

Levels or Scales of Measurement

- Nominal
 - Categorical data e.g. land use type, religious affiliation
- Ordinal
 - Ranked data, e.g. main, secondary, minor roads
- Interval:
 - Interval between any two units can be measured on scale. Zero value is assigned arbitrarily e.g. Celsius and Fahrenheit scales (80°F is not twice as hot as 40°F)
- Ratio:
 - interval data with an absolute zero value

26

27

References (strongly recommended)

- Dale, M. R. T., & Fortin, M.-J. (2014). *Spatial analysis : a guide for ecologists* (Second edition). Cambridge University Press.
 - Chapter 1

28