Map projections 1: principles

How can we 'project' a 3D globe onto a 2D display?
..only a globe maintains all spatial qualities without distortion

What is a Map Projection? mathematical expression showing the 3D surface on a 2D map

This process always results in distortion

Mercator projection (shape)

Oblique Mollweide (area)

Why don't planes fly on straight lines - well they do ...

flight routes are 'great circles' ... straight line in 3D space - but curves here

The world could be mapped like bit of orange peel ... - maybe not a problem locally, but it is for large areas

the strips would still have some curvature
.. and gaps between the strips

12 pieces

48 pieces

becoming like UTM zones..

Or they can be made by literally 'projecting' the globe onto a map ...

Azimuthal (planar) projections

Azimuthal projection

These earliest projections were by the 'ancient' Greeks

Projection Terms

1. Scale Factor (SF)

SF = scale at any location / divided by the 'principal scale'
e.g. if scale $=1: 2$ million and principal scale $=1: 1$ million then SF at that point $=\frac{1}{2}$ million divided by $1 / 1$ million

$$
=1 / 2(0.5)
$$

e.g. Canadian NTS maps: 'scale factor 0.9996 at UTM zone edge'

The Plate Carrée projection

e.g. where every line of latitude is equal in length

SF along lines of latitude are: equator $\mathrm{SF}=1$; at $60^{\circ} \mathrm{N} / \mathrm{S}, \mathrm{SF}=2$ at $90^{\circ}, \mathrm{SF}=\infty$ or 'undefined'

The SF in the other direction (along meridians) is 1

2. Developable surfaces:

A two dimensional surface onto which the globe is projected

Conic

Cylindrical

Azimuthal (planar)

3. Standard Lines

Distortion increases with distance between the 'globe' and the surface

The standard line has a scale factor $=1$
(it is often the line of contact)

Cylindrical projections:

NORMAL

TRANSVERSE

OBLIQUE

Planar projections aspects:

POLAR

EQUATORIAL

OBLIQUE

5. Distortion: compare to the graticule:

>Lines of latitude are 'parallel' and evenly spaced.
$>$ Meridians converge at the poles, (half the distance at $60^{\circ} \mathrm{N} / \mathrm{S}$).
$>$ Scale factor is 1 in all directions.
On the globe, but not any projections..

6. Projection properties

A projection can preserve
>Shapes
or
>Areas
or
>Distances or directions (but not all)
..... and never more than one of these

a. Shape

A projection that maintains shape is 'conformal'
For example a 2×2 square becomes a 1×1 or 4×4 square. Stretching in one direction is matched by stretching in the other: that is, the scale factors are equal at a point in the two directions (i.e. there is 'equal-stretching').

Circles ("Tissot's Indicatrix") ->
These indicate the relative area compared to a standard area at the equator (the standard line)

b. Area

A projection that maintains area is equal area

This is achieved by sacrificing shape: stretching in one direction to counter for earth curvature must be compensated by compression in the other.

In other words, the product of the two Scale factors at any point in the two directions $(\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W})=1.0$ (e.9 $1 \times 1,2 \times 0.5$ etc..)

Hence a projection CANNOT preserve both shape AND area
(equal versus compensating stretching)

Projection properties:
 c. Distance

Distances can be correct in one direction from a line or in all directions from a point

In these cases, the projection is 'equidistant'

Azimuthal equidistant

GUELKE'S EQUIDISTANT PROJECTION TELLS YOU EXACTLY HOW FAR IT IS FROM ANYWHERE ON EARTH TO TORONTO, ONTARIO, CANADA.

In ORDER TO ACHIEVE THIS FEATURE, YOU NEED TO SACRIFICE SOME SHAPES AND SIZES.

Projection types (based on the developable surface)

I. Azimuthal projections

GNOMONIC
Great circles= straight lines Thales 500BC

STEREOGRAPHIC
Conformal (shape)
Ptolemy 125BC

INFINITY
ORTHOGRAPHIC
'View from space'
Hipparchus 150BC

Gnomonic projection Probably the world's oldest map projection $-6^{\text {th }}$ century $B C$

e.g. Equidistant rectangular projection

First map of Mars, 1867- equatorial stereographic

Dark / light = land / 'sea' .. Lines were called 'canals' ... place names from geography

Photomosaic 1960 (pre-NASA): Orthographic projection

Like Earth, longitude zero is arbitrary - a feature is chosen

The Prime
Meridian of the Moon lies directly in the middle of the face of the moon visible from Earth.

Azimuthal equidistant

centred on

 St. John's, NLhis is an AZIMUTHAL EQUIDISTANT PROUECTION centred on his is an AZ. Nextoundiand Only distances and ditection neasured along straight lines radiating from the centre are true. Uil straight lnes passing through St. John's are groat circlos jeformation of the earth surface increases outward from the yentre and measurements taken cther fhan through the centre

SCALE along any straight line through the centre

$1000 \overbrace{\text { Kilometres }}^{2000} 4000$
$1000-\frac{0 \quad 1000 \quad 2000 \quad 3000 \quad 4000}{\text { Mies }}$

Projections of the sphere like the azimuthal equidistant projection have been coopted as images of the flat Earth model depicting Antarctica as an ice wall surrounding a disk-shaped Earth.

The

II. Cylindrical Projections $16^{\text {th }}$ century

 for early world maps ... they fill a rectangular shape

Mercator's Projection 1569 - conformal = shape-preserving

All 'straight lines' have constant compass bearings = Rhumb lines- but the dashed line (great circle) is the shortest route It became known as the "Navigator's friend"

MERCATOR PROJECTION
Scale 1:14,000,000
Ose Inch $\mathbf{- 2 2 1}$ Statute Miles at the Equasor

Mercator
(1569) 'normal'

Transverse Mercator (1772)

The TM projection is the basis for the (Universal) UTM system
Minimal distortion at a chosen longitude

- Adopted by Canada post WWII,
- SYSTEM of 60 TM projections

Claimed by US Army / German Wehrmacht

(1885) Gall-Peters projection (1972) - equal-area

They look the same area on Mercator

Corrects for area distortion, but note the impact on shape

III. Conic projections $-18^{\text {th }}$ century

The cone opens along a line of longitude
Latitude lines are curved sections of a circle
Longitude like 'spokes' of a wheel
Can have 1 or 2 standard lines (parallels)

CONIC projections
(e.g. Albers)

They can be varied by :
A: angle of the cone
... are all 'normal orientation'

B: 1 or 2 standard lines

Two standard parallels (selected by mapmaker)

IV. Pseudo-cylindrical Projections

-19th century (and 20th) - mostly equal-area

These are geometrically constructed. The parallels are generally equally spaced but are made more proportional to their real length to minimize distortion.

Robinson projection (1963) adopted by National Geographic 1988

Poles drawn as lines to create better shapes

The Winkel tripel (Winkel III) by Oswald Winkel in 1921, adopted by National Geographic in 1998. The name Tripel refers to Winkel's goal of minimizing three kinds of distortion: area, direction (shape), and distance.

IVa. Interrupted pseudo-cylindrical (e.g. Goode's, 1923) Minimum overall distortion and equal area - common in world atlases

And now for something completely different ...

Dr. Athelstan Spilhaus Spilhaus projection 1942

Map projections websites:

https://gisgeography.com/map-projections

Map humour: The Moocator Projection

Cordiform projection

Friday: projections in GIS / the digital world

Quiz3 to follow:

