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La deuxi�eme g�en�eration de la carte de l’inventaire canadien des milieux
humides �a une r�esolution de 10 m�etres en utilisant Google Earth Engine

Masoud Mahdianparia,b , Brian Briscoc, Jean Elizabeth Grangera, Fariba Mohammadimanesha ,
Bahram Salehid , Sarah Bankse, Saeid Homayounif , Laura Bourgeau-Chavezg, and Qihao Wengh
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ABSTRACT
Recently, there has been a significant increase in efforts to better inventory and manage import-
ant ecosystems across Canada using advanced remote sensing techniques. In this study, we
improved the method and results of our first-generation Canadian wetland inventory map at 10-
m resolution. Iin order to increase wetland classification accuracy, the main contributions of this
new study are adding more training data to the classification process and training Random Forest
(RF) models on the Google Earth Engine (GEE) platform within the boundaries of ecozones rather
than provinces. A considerable effort has been devoted to data collection, preparation, standard-
ization of datasets for each ecozone. The data cleaning reveals a data gap in several Northern
ecozones. Accordingly, high-resolution optical data, from Worldview-2 and Pleiades, were
acquired to delineate wetland training data based on visual interpretation in those regions. By
using this well-distributed training data, this second generation wetland inventory map represents
an improvement of 7% compared to the first generation map. Accuracy varied from 76% to 91%
in different ecozones depending on available resources. Furthermore, the results of RF variable

importance, which was carried out for each ecozone, demonstrate that jSVV j2
jSVHj2

and NDVI extracted

from Sentinel-1 and Sentinel-2 data, respectively, were the most important features for wetland
mapping.

RÉSUMÉ

R�ecemment, on a constat�e une augmentation significative des efforts visant �a mieux inventorier
et g�erer les �ecosyst�emes importants au Canada en utilisant des techniques de t�el�ed�etection
avanc�ees. Dans le cadre de cette �etude, nous avons am�elior�e la m�ethode et les r�esultats de notre
carte de l’inventaire canadien des milieux humides de premi�ere g�en�eration �a une r�esolution de
10m. Afin d’accrôıtre la pr�ecision de la classification des milieux humides, les principales contribu-
tions de cette nouvelle �etude sont l’ajout de donnees d’apprentissage suppl�ementaires au proces-
sus de classification et la formation de mod�eles de forêts al�eatoires (FA) sur la plateforme Google
Earth Engine (GEE) dans les limites des �ecozones plutôt que des provinces, Un effort consid�erable
a �et�e consacr�e �a la collecte de donn�ees, �a la pr�eparation, et �a la normalisation des ensembles de
donn�ees pour chaque �ecozone. Le nettoyage des donn�ees a r�ev�el�e un manque de donn�ees dans
plusieurs �ecozones nordiques. En cons�equence, des donn�ees optiques �a haute r�esolution, prove-
nant de Worldview-2 et de Pl�eiades, ont �et�e acquises pour d�elimiter les zones d’apprentissage
des milieux humides bas�ees sur l’interpr�etation visuelle dans ces r�egions. En utilisant ces donn�ees
bien r�eparties, la deuxi�eme g�en�eration de la carte d’inventaire des milieux humides repr�esente
une am�elioration de 7% par rapport �a celle de la premi�ere g�en�eration. La pr�ecision varie de 76%
�a 91% dans les diff�erentes �ecozones, en fonction des ressources disponibles. En outre, l’analyse

des variables significatives du FA, r�ealis�ee pour chaque �ecozone, montre que jSVV j2
jSVHj2

et NDVI, extraits

respectivement des donn�ees Sentinel-1 et Sentinel-2, �etaient les caract�eristiques les plus impor-
tantes pour la cartographie des milieux humides.
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Introduction

Until very recently, land cover mapping at large scales
has been a challenging, and in some cases, an impos-
sible task, given the required costs and resources for
image analysis (Hu et al. 2017). In particular, collect-
ing, storing and processing the datasets required to
cover large geographic areas, and the hardware limita-
tions associated with such data processing, were a sig-
nificant barrier for the production of large-scale land
cover maps (Mahdianpari et al. 2020b; Shelestov et al.
2017). This issue is often referred to as the geo big
data problem and is currently being addressed
through the application of newly available technolo-
gies and resources designed for best managing large
volumes of geospatial imagery (Tamiminia
et al. 2020).

Fortunately, the ever-increasing availability of high-
resolution open-access Earth Observation (EO) data
and powerful cloud computing resources provide
unprecedented opportunities for applications at spatial
and temporal scales previously impossible in the geo-
spatial sciences (Mahdianpari et al. 2018a; Wulder
et al. 2018a; Zhou et al. 2020). For example, data col-
lected from the Copernicus programs by the
European Space Agency (ESA) through the Sentinel
missions have contributed significantly to the global
monitoring of the environment over the past few
years (Aschbacher and Milagro-P�erez 2012). The
accessibility and usability of these and other open-
access EO data across large geographic areas and at
high temporal frequencies has been made possible via
advances in cloud computing resources, such as
NASA Earth Exchange, Amazon’s Web Services,
Microsoft’s Azure, and Google cloud platforms (Liu,
2015). Among these cloud computing resources,
Google Earth Engine (GEE) has been recognized as a
well-established, open-access tool that hosts a vast
pool of satellite imagery and offers tools for advanced
web-based algorithm developments and result visual-
ization (Gorelick et al. 2017; Mahdianpari et al. 2020a;
Shelestov et al. 2017). Advancements in methods for
land cover mapping and more are discussed in greater
detail by Wulder et al. (2018a). Such developments
have now made it possible for the Earth to be mapped
at a large geographical scale, opening up research pos-
sibilities in the ocean and ecological sciences, as well
as in various sectors of natural resource management
(Beaton et al. 2019; Duan et al. 2020; Fuentes et al.
2020; Hermosilla et al. 2018), including wetlands
(Chen et al. 2017; Mahdianpari et al. 2018a, 2020b;
Wulder et al. 2018b) to name only a few.

Nation-wide wetland inventory development, and
in turn wetland management, monitoring, and conser-
vation, is one of the numerous areas that are expected
to benefit from the increasing availability of big data
technologies. This new technology is of particular
importance for countries with extensive wetland
coverage, such as Canada and has been exemplified in
recent work by both Wulder et al. (2018b) and
Mahdianpari et al. (2020b). Prior to 2018, a majority
of Canada’s wetland inventories were created at local,
regional, and provincial scales, for example (DeLancey
et al. 2019; Dingle Robertson et al. 2015; Jahncke
et al. 2018; Mahdianpari et al. 2017, 2018a; Millard
and Richardson, 2015; Mohammadimanesh et al.
2018c; Rezaee et al. 2018; White et al. 2017). Many of
these inventories were derived using a variety of
methods (e.g. visual assessment, optical and/or
RADAR, topographical, and field-work), wetland defi-
nitions (Chen et al. 2010; van der Kamp et al. 2016)
classification systems (Alberta Environment and
Sustainable Resource Development, 2015; Ducks
Unlimited Canada, 2014; Gerbeaux et al. 2016;
National Wetlands Working Group 1997), and under
various contexts were constrained by budgets, avail-
able resources, locations, and objectives. While useful
under some circumstances, the methods used and
purposes of these inventories impact their applicability
within national or global contexts (Hu et al. 2017).
These issues, along with spectral and structural simi-
larities between various types of wetlands, and the
lack of clear-cut borders between successional wetland
classes, have limited the capability of the machine
learning tools for large-scale wetland mapping and
resulted in insufficient classification accuracies in
some cases (Hu et al. 2017). Other issues arise when
comparing and contrasting spatial wetland informa-
tion across political, geographical, or disciplinary
boundaries which can in-turn impact the quality,
development and assessment of wetland-related man-
agement and policies (Fournier et al. 2007; Hu
et al. 2017).

Another major issue related to wetland mapping at
national and global scales is the collection of sufficient
high-quality reference data (Mahdianpari et al. 2020b).
Developing a quality nation-wide wetland inventory
using supervised remote sensing methods requires a
large amount of training and testing data distributed
across the entire country, to best represent Canada’s
expansive and diverse landscape (Statistics Canada
2018). Like many of Canada’s wetland inventories,
most available training and testing data have been col-
lected under a variety of contexts, using different local
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and regional wetland definitions, for a number of pur-
poses (often not remote sensing focused), and using a
variety of different methods. Additionally, obtaining
such data is not always a simple task, requiring the
willing contribution of numerous collaborators and/or
the collection of freely available data with variable
metadata quality or sometimes limited explanatory
information. While these discrepancies are an issue,
they are not unexpected and as a result, training and
testing data in a large-scale study will require collab-
oration, substantial editing, and standardization.
Other issues include gathering accurate non-wetland
land cover information which often requires the use
of freely available datasets and visual interpretation of
satellite imagery available via Google Earth. Like the
wetland datasets, the non-wetland land cover data
requires standardization in terms of naming conven-
tions, definitions, and polygon boundaries. The devel-
opment of the training and testing dataset is of
utmost-importance because the quality and accuracy
of these inputs are ultimately reflected in the final
inventory output (Mahdianpari et al. 2018b; Millard
and Richardson 2015; Mohammadimanesh et al.
2018a; Mui et al. 2015).

In the face of increasing globalization, continued
wetland loss, increasing population, urban sprawl, and
human-induced climate change, the importance and
availability of consistent and reliable large-scale wet-
land inventories both in Canada and around the globe
has never been greater. Such large-scale inventories
will contribute to the improvement of the nation-
and global-wide wetland management, protection
initiatives, and policies, allow for consistent
estimations of yearly trends in wetland loss or gain,
analysis of biodiversity, and help improve the outputs
of large-scale climate models and estimates
(Erwin 2009).

Therefore, the overarching goal of the current study
was to leverage state-of-the-art remote sensing tools
for the production of large-scale wetland inventory
maps for Canada. Specifically, the main objectives are
to: (1) prepare structured, cleaned, consistent, and
well-distributed training and testing data for each of
Canada’s ecozones; (2) produce the second generation
Canada-wide wetland inventory; (3) improve the wet-
land classification accuracy compared to the first gen-
eration Canadian wetland inventory map by running
classifications within ecozones rather than provincial
boundaries; and (4) determine the most important
features for national wetland mapping via RF algo-
rithms using built-in capacities in GEE.

Methodology

Study Area

The Ecological Framework of Canada (Statistics
Canada, 2018), which delineates ecologically distinct
areas across Canada, defines a total of 15 ecozones.
Ecozones represent areas of Canada’s land surface
characterized by interacting abiotic and biotic factors.
These ecozones are displayed in Figure 1. The size of
these ecozones ranges from 117,240 km2 (Mixed wood
Plains) to 1,857,530 km2 (Boreal Shield). Please refer
to Table 1 for a summary of the general characteristics
of each ecozone. Note that the three northern eco-
zones (Southern Arctic, Northern Arctic, and the
Arctic Cordillera) are referred to as the Northern
Ecozones throughout the remainder of this study.
These three ecozones are grouped together for pur-
poses of reference data development, processing, and
classification as a result of the limited available wet-
land data for this area. Additionally, the Boreal Shield
was split into two areas (east and west), and the
Boreal and Taiga Cordillera ecozones were merged
into one (Boreal/Taiga Cordillera), for processing and
training data development purposes. The reasoning
for this is discussed in Section “Reference data”.

Reference Data

Broadly, the development of the reference data for
this study required, for each ecozone, a dataset com-
prised of accurately-delineated polygons representing
bog, fen, swamp, and marsh wetland classes, and com-
mon non-wetland classes including water, foreset,
shrub/grassland, agriculture, and exposed/urban.
Descriptions of these classes can be found in Table 2.
Generally, the wetland data for this study were gath-
ered from multiple collaborators across Canada, and
the non-wetland data were derived via visual polygon
delineation with the aid of the Agriculture and Agri-
foods Canada 2018 Crop Inventory map (Agriculture
and Agri-food Canada 2018), with some exceptions
which are discussed below.

The wetland data for this study were acquired from
a number of sources across Canada. Ultimately, these
wetland data were used to produce training and valid-
ation datasets for each ecozone. These datasets were
collected for a variety of purposes, over several years,
at different scales, and using different field, classifica-
tion, and polygon delineation methods. As a result,
the distribution and amount of data available within
each ecozone vary considerably (see Figure 1). For
these reasons, the datasets needed to go through
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several rounds of editing before being functionally
incorporated into an ecozone final reference dataset.

As a first step, the data were filtered to remove any
polygons smaller than 1 hectare and greater than 100
hectares because small polygons would not contain
any helpful spectral information for the classifier
according to the minimum mapping unit of this
study, and the large polygons had a higher chance of
being highly spectrally heterogeneous. Next, some
datasets were clipped to ensure that each ecozone had
its own specific dataset associated with it. This is
because a number of these datasets spanned the boun-
daries of multiple ecozones. Note that a small number
of ecozones did not have any wetland training data
located within their boundaries, and as a result, these
ecozones were instead classified using the reference
data in an adjacent ecozone sharing similar landscape
features. These ecozones include the Taiga Cordillera
and the three northern-most ecozones (Arctic
Cordillera, Nortern Arctic, and Southern Arctic),
which were merged to create two broad multi-ecozone
boundaries. The three northern ecozones were merged
with one another because each lacked any wetland ref-
erence data and all three are located above the tree-
line. Though the Taiga Cordillera ecozone shares a
boundary with two ecozones (Boreal Cordillera and
Taiga Plains), the Taiga Cordillera was ultimately
merged with the Boreal Cordillera due to shared land-
scape characteristics such as substantial mountainous
areas (Ecosystem Classification Group 2010) and

relatively low estimates of wetland presence
(Environment and Climate Change Canada 2016),
verses the Taiga Plains characterized by lowlands
(Federal, Provincial, and Territorial Governments of
Canada 2010) and extensive wetlands (Environment
and Climate Change Canada 2016). Note that by
merging ecozones, there will likely be an impact on
the accuracy of wetland classification in these areas.
The Boreal Cordillera dataset, for example, will likely
not characterize wetlands in the Taiga Cordillera as
accuractly, impacting final classification results.
Additional data cleaning steps, including the standard-
ization of naming conventions to conform to the
classes outlined in Table 2, removal of some inaccur-
ate polygons, re-classification of some polygons, and
boundary modification of others, were also performed.
Additionally, in datasets where there were thousands
of wetland polygons (i.e., local wetland maps), a sub-
set of these polygons was randomly selected for
incorporation into the final reference dataset.

Notably, there were not any wetland data available to
this study for the northern-most ecozones, and because
Google Earth has limited or inconsistent imagery in
northern Canada, very high resolution (VHR) imagery
was acquired for purposes of producing a northern eco-
zone wetland dataset. Wet areas along the northern
coast were identified to collect coincident WorldView-2
and Pleaide’s imagery for these areas. Effort was made
to select the most recent summer imagery available,
though the selection was constrained by image

Figure 1. Canadian ecozones, with reference data distribution across Canada displayed in black. The Boreal Shield ecozone has
been split into two. For the purposes of this research, the 3 northern-most ecozones (Arctic Cordillera, Northern Arctic and
Southern Arctic) have been combined into a single area. The Taiga and Boreal Cordillera ecozones have also been combined into
a single area.
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Table 1. A summary of land cover characteristics of each ecozone (Ecosystem Classification Group, 2010; Environment and
Climate Change Canada, 2016; Federal, Provincial, and Territorial Governments of Canada 2010; Smith et al. 2004), ecozone sizes,
and the processing time and the number of Sentinel-1 and -2 images required to produce classifications.

Ecozone
Spatial
location

Area
(km2)

# Sentinel
images

Process
time (days) Description

Atlantic Maritime (AM) 206,105 HH-VV: 601 2 Has a maritime climate. The most common land cover is
forest. Agriculture is the most common human activity. The
most common wetlands are treed (swamp, bog, fen).

VV-HH: 925
S2: 2931

Boreal and Taiga
Cordillera (Boc)

206,104 HH-VV: 601 2 Summers are short and cool. Dominating land cover includes
mountains and tundra to the north and forests to the south.
Wetlands are less common here than the neighboring Taiga
Plains. Wetlands are most common in valleys.

VV-HH: 925
S2: 2931

Boreal Plains (BP) 713,733 HH-VV: 0 0 Has a continental climate. Forest is the most common natural
land cover type. Agriculture mostly present along the south
edge and the north-east. The most common wetlands include
conifer swamps, fens, and bogs.

VV-HH: 2525
S2: 5184

Boreal Shield
East (BSE)

797,737 HH-VV: 1519 9 Moderate summer and winter temperatures. Part of he largest
Canadian ecozone. Low elevations dominated by forest and
shrubs with minimal anthropogenic land cover. Peatlands are
the most common.

VV-HH: 1871
S2: 5371

Boreal Shield
West (BSW)

1,059,793 HH-VV: 0 11 Moderate summer and winter temperatures. Part of the he
largest Canadian ecozone. Low elevations dominated by forest
and shrubs with minimal anthropogenic land cover.

VV-HH: 2078
S2: 7825

Hudson Plains (HP) 364, 924 HH-VV: 0 4 Has a maritime climate. Extensive wetlands are present,
particularly peatlands. Marsh is common along the north. This
area is often referred to as Canada’s largest wetland complex.
There is relatively little forest present.

VV-HH: 2078
S2: 3757

Mixedwood
Plains (MP)

117, 240 HH-VV: 0 1 The most populated ecozone characterized by a climate of
warm summers and cool winters. The landscape is flat and
dominated by agriculture. Most wetlands are located along
the edge of the ecozone and to the northeast.

VV-HH: 682
S2: 1860

Montane
Cordillera (MC)

477, 899 HH-VV: 0 4 The most diverse topography and climate relative to other
ecozones, with various mountain ranges present. Forest covers
over half of the land surface. There is little wetland coverage,
mostly located along rivers and in valleys.

VV-HH: 1965
S2: 4292

Northern
Ecozones (NE)

2, 504, 089 HH-VV: 1995 14 Characterized by low temperatures and permafrost. Mountains
and glaciers dominate the north, and barrens and plains to
the south. There is little human presence. Wetlands,
particularly peatlands, are dispersed through the barrens and
along waterways.

VV-HH: 1929
S2: 15144

Pacific Maritime (PM) 205, 065 HH-VV: 0 2 Has a mountainous maritime climate. The Coast Mountains
and extensive forests dominate the landscape. Most
anthropogenic land cover is located at the southern end of
the ecozone. There are relatively few wetlands here.

VV-HH: 1820
S2: 3013

(Continued)

CANADIAN JOURNAL OF REMOTE SENSING 5



availability, cloud cover, and cost. Because cloud-cover
is a significant issue in northern Canada, the most
recent summer dates for which we could obtain cloud-
free imagery were during the summers of 2015 and
2016. Figure 2 shows some peatland and swamp delin-
eation via visual assessment in a WorldView-2 image
taken near Kugluktuk, Nunavut (top), and in a Pleaide’s
image near Bathurst Inlet (bottom). Because the asses-
sor did not feel confident differentiating between bog
and fen wetlands in the imagery, all delineated peat-
lands were referred to as fen. The fen classification was
chosen rather than bog as the fen class better captures
the variation present in peatland vegetation compos-
ition. This imagery was essential for producing wetland
data for the northern ecozones; however, the dataset
remained small in spatial extent due to the limited
extents of the imagery, and as a result will likely impact
the accuracy of the final classification result, particularly
in areas furthest from the reference polygons. Non-wet-
land classes were delineated using the VHR imagery
as well.

The Agriculture Agri-Food Canada 2018 Annual
Crop Inventory map (Agriculture and Agri-food
Canada 2018) guided the delineation of non-wetland
polygons. As a first step, the most common non-wet-
land land cover within each ecozone was calculated
using the Crop Inventory map. Next, polygons repre-
senting the most common land cover types were
manually delineated, using both Google Earth and the
Crop Inventory map as a visual aid. Some ecozones
did not have any coverage by the Crop Inventory
dataset, most commonly in ecozones located in the
northern parts of Canada. As such, visual identifica-
tion of some common land cover types was conducted
using the interpretation of VHR imagery or ancillary
land cover datasets, including the 30m resolution land
cover map of Canada provided by the Canada Centre
for Mapping and Earth Observation (CCMEO 2019).
These data were checked against recent Google Earth
and Sentinel-2 imagery for accuracy, and to correct
any classification errors that may result as land cover
changes over time. Table 3 summarizes the number of

Table 1. Continued.

Ecozone
Spatial
location

Area
(km2)

# Sentinel
images

Process
time (days) Description

Prairies (Pr) 460, 314 HH-VV: 0 4 More variable climate than other ecozones. Almost entirely
covered in agriculture. There are very few wetlands located
here, having been lost to agriculture. Wetlands that are
present are very small “prairie potholes.”

VV-HH: 1350
S2: 4069

Taiga Plains (TP) 620, 257 HH-VV: 0 5 A argely flat area. There is a colder climate in the north
verses the south. Most land cover is forest and shrub, and
little human presence. Wetlands of many types are
widespread, including swamps, peatlands, and marsh.

VV-HH: 1584
S2: 5091

Taiga Shield (TS) 1, 330, 050 HH-VV: 698 12 Open forest transitions to shrub and tundra moving north.
There is little human activity. Wetlands make up around 13%
of the area, but trends indicate wetland expansion due to
changes in weather and permafrost.

VV-HH: 2218
S2: 8392

Table 2. Wetland and non-wetland reference data classes (Agriculture and Agri-food Canada, 2018; National Wetlands Working
Group, 1997).
Ecozones Type Description

Bog Wetland Peatland dominated by sphagnum moss and ericaceous shrubs receiving water and nutrients from
precipitation only.

Fen Wetland Peatland dominated by mosses, sedges and shrubs receiving water and nutrients from
multiple sources.

Swamp Wetland Wetland dominated by woody tree and shrub vegetation with standing or moving water present,
depending on the the season.

Marsh Wetland Wetlands dominated by emergerent sedges, reeds and rushes with persistant or frequent standing or
slow moving nutrient-rich water.

Water Non-wetland Open fresh and salt water bodies including lakes, ponds, rivers, stream, bays, etc.
Forest Non-wetland Dry landscapes dominated by trees including coniferous and deciduous species.
Shrub/Grassland Non-wetland Dry landscapes dominated by low-lying vegetation including woody and herbaceous plants.
Agriculture Non-wetland Land used for growing crops of all kinds and pastures growing grassy vegetation for hay.
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wetland reference polygons and their areal coverage
for each ecozone. To produce the final reference data,
the wetland and non-wetland polygons for each eco-
zone were randomly divided into two groups: 50% for
training and 50% for testing. Specifics of the data
preparation for each ecozone are discussed below.

Remote Sensing Data and Image Processing

The Sentinel Earth Observation missions from the
Copernicus program managed by the European
Commission in partnership with the ESA, consist of
both radar and super-spectral imaging systems for the
land, ocean, and atmospheric monitoring. To improve
the revisit time and coverage capability, each mission
benefits from a constellation of two satellites. In this
study, the GEE data catalog was used to obtain satellite
imagery over our study area during summers of 2017-
2019 from Sentinel-1 and Sentinel-2 data (Gorelick
et al. 2017). A total of 4,813 and 22,955C-band Level-1
Ground Range Detected (GRD) images were acquired
in the HH-HV and VV-VH polarization modes of
Sentinel-1, respectively. Due to the mission of Sentinel-
1, single-(HH) or dual-(HH-HV) polarized data are col-
lected over sea ice zones and single-(VV) or dual- (VV-
VH) polarized data are collected over all other observa-
tion zones (e.g., lands), we have the greater availability
of VV-VH compared to HH-HV polarization mode.
Figure 3 demonstrates the spatial distribution of all
available Sentinel-1 observations.

It should be noted that different pre-processing
steps, including noise removal, radiometric calibra-
tion, and terrain correction, were already applied to
the Sentinel-1 GRD data available in the GEE data
catalog. To reduce the speckle noise from Sentinel-1
data, an adaptive sigma Lee filter with a pixel size
of 7� 7 was then applied. Next, SAR backscatter
values and other derivatives of these values were
extracted and incorporated into the classification
scheme. Table 4 presents extracted features from
Sentinel-1 and Sentinel-2 imagery for wetland
classification.

Among the extracted features from a dual-pol SAR
data, r0HH is the most useful and frequently used for
wetland mapping (Brisco et al. 2013; Mahdianpari et al.
2017; White et al. 2017; Mohammadimanesh et al.
2018c). This is because r0HH values are effective for
characterizing the flooding status of wetland vegetation,
and it is the most favorable SAR-based derivative for
distinguishing non-flooded vegetation from herbaceous
wetlands (Mohammadimanesh et al. 2018b). In cases of
sparse canopy closure, r0VV values can also be appropri-
ate for discriminating herbaceous wetland classes. The
dominant backscattered signal from wetland’ vegetation
canopies is volume scattering, which is better repre-
sented by r0HV : Accordingly, all extracted SAR features
in this study were stacked to generate a seasonal
Sentinel-1 data composite using the GEE’s array-based
computational approach, and then, the images from
multiple years (2017–2019) were combined.

Figure 2: Wetland delineation using VHR imagery. Top: Peatland delineation using June 29th 2016 Pleaides imagery. Bottom:
Swamp delineation using June 29th, 2015 WorldView-2 imagery.
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Figure 3. The total number of (a) Sentinel-1in VV-VH mode and (b) Sentinel-1 HH-HV in mode observation during the summers of
2017–2019 in Canada. The color bar represents the number of collected images.

Table 3. Summary of the reference data employed for each ecozone.

Ecozones
# Wetland
polygons

# Upland
polygons Description

AM 3000 802 The wetland reference data were selected randomly from a New Brunswick dataset gathered
between 2013 and 2015. Dataset came with ancillary descriptions of hydrology and
vegetation. Non-wetland polygons were produced using the Crop Inventory maps and
Google Earth.

Boc & TC 348 336 There is no Crop Inventory coverage here, so non-wetland polygons were produced using
visual assessment in Google Earth. The dataset is dated 2016 and is located in and around
the Yukon communities of Haines Junction and Whitehorse. Little ancillary
information available.

BP 200 480 Wetland data came from five datasets collected between 2013 to 2016. The Crop Inventory
maps guided non-wetland land cover delineation. Because the reference dataset was
derived from five sources, there is likely great variation in how wetlands were classified
and delineated.

BS East 612 550 Wetland data derived from multiple datasets across Newfoundland and Labrador dated
between 2015-2019. The original purpose of the data was for wetland classification using
remote sensing. The Crop Inventory maps guided all non-wetland land cover delineation.

BS West 2154 548 Wetland information derived from a very large wetland dataset in Ontario dated between
2013 to 2018. Onlythose wetlands that had been listed as being verified and evaluated
were kept. The Crop Inventory maps guided all non-wetland land cover delineation.

HP 2000 345 The Ontario wetland dataset was used to derive wetland polygons. Refer to the section
discussing the data for the Boreal Shield West ecozone for more information. Because this
area lacked Crop Inventory coverage, non-wetland polygons were delineated based on
assessment of Google Earth.

MP 1165 600 The wetlands for this ecozone were derived from the Ontario wetland dataset. Please refer to
the section discussing the data for the Boreal Shield West ecozone for more information.
The Crop Inventory maps guided all non-wetland land cover delineation.

MC 26 209 No wetland data sourced for this ecosystem. As such, the online Canadian Wetland Inventory
by Ducks Unlimited (DCI) was referred to from which a small number of 2012 wetland
polygons were gathered. There were no bog polygons and very few fen polygons.

NE 120 294 No available wetland data or Crop Inventory coverage of the three most northern ecozones.
Details on development of a dataset for this area using VHR imgery discussed earlier in
this section.

PM 117 296 Wetland polygons were derived from a dataset collected in and around the Vancouver area
in 2016. There was very little data for the bog class. Additionally, most of the bog
polygons are derived from a single large bog (Burns bog). Crop inventory was used to
obtain non-wetland polygons.

Pr 250 600 Datasets were all gathered around the Assinboine River Valley and Whitewater Lake in
Manitoba between 2007 to 2009. Only a small numer of polygons were of the appropriate
size. There were also no bog polygons. The Crop Inventory map was used to delineate the
non-wetland polygons.

TP 230 213 Datasets located within this ecozone were collected around the vicinity of Great Slave Lake
in the Northwest Territories between 2015 and 2020. Only half of the total polygons fell
within the Taiga Plains ecozone. These datasets also provided training polygons for non-
wetland land cover.

TS 220 327 Wetland polygons obtained from the same dataset discussed in the Taiga Plains ecozone.
Only half of the training polygons provided by these datasets fell within the Taiga Shield.
These datasets also provided training polygons for non-wetland land cover as well.

8 M. MAHDIANPARI ET AL.



We obtained Sentinel-2A and Sentinel-2B Level-1C
top of atmosphere images acquired on a tri-monthly
period, from June to August. This is because generat-
ing a 10-m cloud-free Sentinel-2 composite for
Canada over a shorter time was challenging. This
period is also an optimum time for wetland mapping
in Canada due to the high value of wetland pheno-
logical information (reflected in the range of spectral
signatures for different classes), and the availability of
more cloud-free Sentinel-2 imagery at this time. A
total of 72,046 Sentinel-2 images (with cloud-cover
less than 20%) from the summers of 2017–2019 were
queried from the GEE data catalog. It should be noted
that in this study, we only used the four multispectral
bands with 10m resolution to produce a high-reso-
lution (10m) wetland inventory map. To detect and
mask out the remaining clouds and cirrus, the QA60’
bitmask band (a quality flag band) available in the
metadata of Sentine-2 imagry was employed. To
remove other clouds and aerosols a thresholding tech-
nique was then applied using the Sentinel-2 aerosol
band (band1> 1800). Figure 4 demonstrates the spa-
tial distribution of all available Sentinel-2 observa-
tions. In addition to the normalized difference
vegetation index (NDVI) that used in our previous
study (Mahdianpari et al. 2020b), we added an optical
feature, Green Chlorophyll Vegetation Index (GCVI),
to our analysis to investigate the capability of different
vegetation indices extracted from Sentinel-2 imagery.
Leveraging the GEE composite function, each seasonal
group of images were stacked into a single median
composite on a per-pixel, per-band basis, including
four spectral bands, NDVI, and GCVI.

In this study, an object-based classification scheme
consisting of a simple non-iterative clustering method,
and the Random Forest algorithms were used. This
classification framework is similar to our previous
work (Mahdianpari et al. 2020b); however, we applied
the classification models within each ecozone rather
than each province. This is because there is more
commonality between wetland vegetation classes, in

terms of climate, landform, human activities, wildlife,
soil, and vegetation, within an ecozone, compared to
within provincial borders (He et al. 2012; Pickell et al.
2016). In the first generation of the Canadian wetland
inventory map, there was a lack of training data in
some ecozones, making this study impossible at that
time because training data can be a major bottleneck
in the machine learning algorithms. The processing
time for training RF models in different ecozones is
presented in Table 1.

Results and Discussion

Three examples of classified wetland ecozone maps, in
ecozones with average, high and low wetland cover-
age, are presented in this section. Figure 5 demon-
strates the wetland inventory map of the MP, HP,
and Pr.

Figure 5a shows the results of the MP classification.
A little less than half of the ecozone is covered in wet-
lands, the most common being swamp, bog and fen,
largely located along the north and north-east edge.
Marsh wetlands are very rare. The spatial extent and
location of wetlands, and the dominance of swamp
and peatland classes, is consistent with a previous
assessment of this ecozone, which states that swamp is
the most common wetlands in the ecozone (ESTR
Secretariat 2014). The most common non-wetland
land cover in the MP is agriculture by far. The
majorty of wetlands are restricted along the edges of
the agricultural areas, though several small wetlands
are located distributed throughout.

Figure 5b illustrates the results for the HP, which by
far, has the broadest wetland coverage relative to the
results of all other ecozones. This is also in line with

Table 4. Features extracted from Sentinel-1 and Sentinel-2
imagery in this study. r0XX and r0XY denote co- and cross-polar-
ized sigma nought in the logarithmic scale (dB).
Sentinel-1 (VV-VH) Sentinel-1 (HH-HV) Sentinel-2

r0VV r0HH Blue : B2
r0VH r0HV Green: B3
jr0VV j2
jr0VH j2

jr0HH j2
jr0HV j2

Red : B4

r0VV
�
�

�
�
2 þ jr0VHj2 jr0HHj2 þ jr0HV j2 NIR : B8

NDVI ¼ B8�B4
B8þB4

GCVI ¼ B8
B3
� 1

Figure 4. The spatial distribution of all available Sentinel-2
observations during the summers of 2017–2019 in Canada.
The color bar represents the number of collected images.
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previous assessments of HP and reflects its reputation as
the largest wetland complex in Canada, and the third-
largest wetland complex in the world (Abraham and
McKinnon 2011). The most dominant wetland types
here are bog and marsh, followed by fen, while the least
dominant is the swamp. Most of the marsh is located
along the coast to the north and north-west. This eco-
zone is known to have extensive coastal marshes, includ-
ing tidal flats and salt marshes in this area (Abraham
and McKinnon 2011). Bog and fen wetlands are also
known to commonly occur in this ecozone and make
up a large portion of the wetland complex. Here, bog
and fen occur across much of the ecozone, though they
are mostly concentrated through the center. Non-wet-
land land cover types are mostly absent.

Figure 5c demonstrates the results for the Pr,
wherein wetlands are shown to cover a little less than
3% of the total ecozone area. The most common wet-
land classes here includes marsh and swamp. Peatland
presence is minimal. These results reflect previous
assessments of wetlands in this ecozone, which state
that around 3% of the ecozone are made up of wet-
lands largely comprised of praire pot holes.

(Ecosystem Classification Group 2010). Praire pot
holes are small shallow water wetlands, and in this
classification are represented by the marsh class.
These wetlands are located in small areas throughout
the agricultural landscape, making up almost the
entiretly of the ecozones landscape.

Figure 6 shows the overall accuracy, Kappa, pro-
ducer’s, and user’s accuracies for all ecozones. The
ecozone with the highest overall accuracy is the
Prairies, located mainly within southern
Saskatchewan. Note that there was no bog data avail-
able within the Prairies ecozone, and most of this area
is dominated by non-wetland agricultural land (Ahern
et al. 2013). As previously mentioned, the ecozones
with the lowest accuracies are the Boreal and Taiga
Cordillera, at 76% accuracies. The reasoning for this is
discussed in more detail in Section “Reference data”.
However, to summarize, the overall accuracy is likely
a result of the lack of training data available for the
Taiga Cordillera and the subsequent need to classify
both the Taiga Cordillera and the Boreal Cordillera
(an adjacent ecozone) at the same time, using the
dataset only present within the Boreal Cordillera.

Figure 5. Classified maps of the (a) Mixedwood Plains, (b) Hudson Plains, and (c) Prairies ecozones.
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Note that outside of the Taiga and Boreal Cordillera,
all other ecozones were relatively well classified, with
the overall accuracies higher than 80%, a majority of
which (eight ecozones) are above 85%. However, it
should also be noted that while the overall accuracy
for the Northern Ecozone is high at 87%, this is likely
inflated due to the limited test and train data available
to classify this large area.

Figure 7 illustrates the second generation of
the Canada-wide wetland inventory map at a spatial
resolution of 10m using the object-based RF
classification.

Compared to the first generation of this product,
RF models were trained for each ecozone rather than
each province or territory, which increased wetland
classification accuracy. This improvement is a result
of more commonality between wetland vegetation
classes within an ecozone compared to the provincial
administration borders. Furthermore, significant effort
was devoted to data collection to prepare structured,
cleaned, and consistent training data for each ecozone,
which included data acquisition, labeling, and
improvement of existing data. Because a data gap was
identified in the Northern ecozones, high-resolution

Figure 7. The second generation of Canada-wide wetland inventory map.

Figure 6. Accuracy assessment indices determined for each ecozone (UA: User’s accuracy; PA: Producer’s accuracy, OA: Overal
accuracy, Kappa: Kappa coefficient, AM: Atlantic Maritime; Boc/TC: Boreal and Taiga Cordillera; BP: Boreal Plains; BSE: Boreal Shield
East; BSW: Boreal Shield West; HP: Hudson Plains; MP: Mixedwood Plains; MC: Montane Cordillera; NE: Northern Ecozones; PM:
Pacific Maritime; Pr: Prairies; TP: Taiga Plains; TS: Taiga Shield).
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optical data from Worldview-2 and Pleiades were
used to delineate wetland training data in those
regions. Using this well distributed training data, the
whole country was mapped with an overall accuracy
approaching 86%, representing an improvement of 7%
compared to the first generation. Accuracy varied
from 76 to 91% in different ecozones, depending on
available resources. Overall, the results of the RF vari-
able ranking demonstrate the greater importance of
the optical features compared to the SAR features in
all ecozones. NDVI was found the most important
optical feature, followed by GCVI and near- infrared
(NIR) band. Among the SAR features, jr0VV j2

jr0VH j2
and r0VH

illustrate the greater contribution to the overall accur-
acy relative to others. Nevertheless, there was a lack of
dual-polarized HH-HV data in many ecozones. Thus,
these results can not compare the capability of
extracted features from HH-HV and VV-VH data
with each other.

According to our results, peatlands (bog and fen)
are the most common wetland class in Canada, which
is reflective of Canada’s reputation of having extensive
peatland wetlands (Mahdianpari et al. 2020b). The
dominance of peatlands is mostly the result of
Canada’s general climate, which facilitates the build-
up of peat (higher precipitation than evaporation).
Peatlands appear to be distributed mainly across the
center portion of Canada, from Newfoundland and
Labrador to the Yukon. The ecozones that contain the
highest amount of peatland include the BS, HP, MP,
TP, and TS, which have been reported previously as
being the major peatland-containing ecozones in
Canada (Webster et al. 2018). Peatlands occur less fre-
quently in southern Canada, where forest and
anthropogenic land cover seem to dominate. Marsh
wetlands are the least common of all wetland classes,
with the most significant coverage by far occurring in
the HP ecozone, where there are known expansive
coastal marshes and tidal flats (Abraham and
McKinnon 2011). The ecozones with the least marsh
are in the MP and Pr ecozones, of which the land-
scapes has been highly modified as a result of human
activity, in particular, agriculture.

Swamp wetlands are also estimated as being a typ-
ical wetland; however, this must be interpreted in
relation to the known difficulty related to remotely-
classifying swamp wetlands and differentiating this
class from the upland forest (Jahncke et al. 2018).
Here, swamp appears to be over-classified versus the
other wetland types. However, results may be
improved by increasing upland forest training data,
using higher resolution imagery as well as L-band for

better swamp forest separation, or incorporating high-
resolution topographic information. However, this is
not always a simple solution at such large scales.
Additionally, many of the swamp wetlands occur
along streams and rivers, and as a result, the training
data polygons for these wetlands are not always opti-
mally shaped (long and thin) for use at medium spa-
tial resolutions. Compared to the first generation
results (Mahdianpari et al. 2020b), swamp appears to
be much more common. This increase may be attrib-
uted to a general increase in available wetland training
data versus the first generation, particularly in the
Maritime Provinces. The difficulties in mapping treed
wetlands, such as swamp, using remote sensing has
been discussed in similar studies (Jahncke et al. 2018),
and is of even greater difficulty when using 10m reso-
lution imagery, or when topographical data cannot be
applied as is often the case with large-scale studies
such as this.

One of the significant advantages of the RF
classifier is its capability to determine the importance
of input features (i.e., variable ranking;
Mohammadimanesh et al. 2019). This is beneficial
when a large number of input features are incorpo-
rated into the classification scheme. The RF variable
ranking has been recently added to GEE as an output
of the random forest classifier. Figure 8 demonstrates
the most important features, by ecozones.

Overall, the extracted features from optical data
(i.e., spectral bands: B2, B3, B4, B8, NDVI, and GCVI)
are more helpful for achieving higher accuracies, com-
pared to SAR features (i.e., normalized Radar cross
section, ratio, and span in both HH-HV and VV-VH
modes). NDVI is the most important feature in many
ecozones, particularly in ecozones with dominant agri-
cultural activities (e.g. AM and Pr). GCVI and NIR
(B8) are also important features in several ecozones.
This is expected, as forests, wetlands, and agricultural
fields are dominant land cover classes throughout
most of Canada’s ecozones. Although B2 is the least
important optical features in most ecozones, it shows
greater importance in the NE ecozone, given the pres-
ence of several small and big water bodies across this
ecozone. Notably, there was a lack of dual-polarized
HH-HV data in most of Canada’s ecozones. These
features are illustrated with dark blue in Figure 8 in
those regions. Similar to NDVI, albeit with a lower

rank, jr0VV j2
jr0VH j2

was identified as an important feature for

ecozones with dominant agricultural fields (e.g. AM).
This is expected, as r0VV observations are appropriate
for discriminating herbaceous wetland classes, and
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dominant scattering mechanisms of vegetation are
volume scattering, and they have the strongest
responses in the cross-polarized signal (r0VH). Span or
total power, extracted from dual-polarized VV-VH
data, and r0VH are also among the useful SAR features
in many ecozones.

It is often very challenging in a study like this to
source a large amount of quality data from such a
wide variety of organizations, collaborators, institu-
tions, and more. The present study would be impos-
sible without this data. It is important to note when
working with such data the differences in the ways
the various datasets were compiled. Each dataset will
have been created by different people, using different
methods, for different purposes (often not for the pur-
poses of imagery classification), and during different
time frames. These issues are entirely expected in
studies such as these. Referring to Section “Reference
data”, there are large differences in the amount and
characteristics of data available across and within indi-
vidual ecozones. For example, some datasets may have
more spectrally homogenous polygons than others,
depending on their original purpose. Additionally, the
distribution of the datasets does not always adequately
represent the entirety of the ecozone area. All of this
will have impacts on the quality of the final classifica-
tions and must be considered when interpreting the
results. While effort was made to standardize across
datasets, such as removing inappropriately sized poly-
gons, and removing any obviously out-dated polygons,
much more dedicated work is needed to modify and
make these datasets as cohesive as possible, which was
beyond the time and resources available to this study,
and is an on-going process.

Nevertheless, these datasets may act as a substantial
jumping-off point for the development of a Canada-
wide wetland dataset suitable for applications in
remote sensing. A significant effort would need to be
dedicated to carefully examine all available wetland
data, modifying their boundaries to produce more
homogenous polygons, removing out-dated or
inaccurate polygons, and perhaps further dividing the
bog, fen, swamp, and marsh polygons into sub-classes
based on broad vegetation characteristics (treed fen,
shrub swamp, emergent marsh etc.,), which would
also contribute to improving the homogeny of the
polygons. This, however, is made more difficult given
the transient nature of wetland boundaries over the
years, seasons, and even days. Incorporation of some
hydrological and topographical data may improve the
overall classification as well, particularly that of the
swamp. Additionally, greater amounts of non-wetland
land cover would contribute to a better overall-quality
remote sensing-centered wetland dataset.

Beyond reference data collection, future works can
investigate the effect of incorporating additional high-
quality satellite imagery collected by advanced SAR
missions, such as L-band ALOS-2, L- and S- bands
NASA-ISRO Synthetic Aperature Radar (NISAR), or
Hybrid Compact Polarimetry (HCP) data from
RADARSAT Constellation Mission (RCM) satellites
(Adeli et al. 2020). It is expected that adding these
valuable data will improve the classification accuracy
considerably. Additionally, future work may improve
upon current methods to more accurately classify in
areas where there has been recent large-scale changes
such as the fires in British Columbia in 2017 and
2018. Finally, it is recommended that land cover
change be evaluated at local, regional-, or national-
scales on a periodic basis, given the inherently
dynamic nature of wetlands. Change detection based
on multi-temporal satellite imagery provides a unique
opportunity to monitor these changes in a cost- and
time-efficient manner.

Conclusions

Wetland mapping and monitoring, especially at large
scales, is challenging due to the inaccessibility and
diversity of wetlands, fuzziness of wetlands’ bounda-
ries, as well as the cost and time requirement for field
data collection. Nevertheless, recent advances in
remote sensing tools, such as the availability of high-
resolution open-access satellite imagery as well as
powerful cloud computing resources, alleviate these
issues to the feasible extent, offering unprecedented

Figure 8. Normalized variable importance returned by random
forest models trained on each ecozone.
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opportunities for monitoring these important natural
resources using cost- and time-efficient methods. By
leveraging the state-of-the-art remote sensing techni-
ques, this study produced the second generation of
10m wetland inventory map of Canada using the RF
classifier and data collected from dual-polarimetry
Sentinel-1 SAR and multi-spectral Sentinel-2 optical
Earth observations on the GEE cloud comput-
ing platform.

Overall accuracies for the 13 ecozones examined in
this study ranged from 76% to 91%, 10 of which have
overall accuracies greater than 81%. Ecozones with the
lowest accuracies tended to occur in the northern
parts of Canada (Taiga Plains, Taiga Shield, and the
Boreal and Taiga Cordilleras) where little to no wet-
land reference data were available. The most import-
ant variables contributing the classification results in
all ecozones include Sentinel-2 optical features such as
NDVI, GCVI and NIR. SAR variables were ranked
less important than optical vairables, though jr0VV j2

jr0VH j2
and

r0VH made the greatest contribution of all SAR varia-
bles investigated. Utimately, these results represent a
7% improvement over the first generation, through
the use of ecozone rather than provincial boundaires,
and through increased effort in reference data gather-
ing and preparation.
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