Map Basics lecture - summary

- The nature of mapping
- Maps and data layers
- Types of maps /data
- Uses of maps / data
- Map Scales

Coordinates - Friday's lecture

1b. There are multiple types / scales of maps for the same area

2. Maps and data layers

Maps and datasets are composed of layers or themes 'feature' types are organised in layers e.g. roads, rivers etc.. There are three (vector) types: points, lines and areas (GIS polygons)

Raster (grid) layers

In addition to the 3 'feature' types, there are continuous

 grids (rasters) e.g. for air photos, images, relief models

Pixels
'picture elements'

3. Types of Maps and data

Figure 1. Geomatics (After Konecny, 2002)
KONECNY, G. (2002). Recent Global Changes in Geomatics Education, Proceedings of 22nd FIG Congress 2002, Washington, D.C.

a. General purpose (topographic) - 'base layers'

 These show the visible features of the landscape e.g. relief, water, and roads - base maps, relief maps, city maps (and nautical charts)

b. Special purpose (thematic)

Emphasis is placed on a particular element e.g. climate, geology, population density, industry.

Global coffee consumption

4. Purpose of Maps / spatial data

A. Display and store of spatial information (space)

B. Historical record of spatial features (time)

Europe: Map series 1800-> https://maps.nls.uk/geo
Canada does not have many multi-date map sets and only displays the most recent

Purpose of Maps \& Spatial data

A. Display and store of spatial information
B. Historical record of spatial features

Kakwa Park, BC 1920
Adjacent to $\mathrm{BC}-\mathrm{AB}$ border

2010 (Google maps)

Purpose of maps: C. Communication tool

What is the red line at $\sim 46^{\circ} \mathrm{N}$?

General Uses of Maps \& Spatial data

Communication propaganda: Promoting BC during the Gold Rush, 1858

General Uses of Maps \& Spatial data

Communication tool e.g. propaganda

German propganda, world war II

Modern propaganda?
Map image implies supertanker safety (by omitting islands) accidentally or not

Critical Cartography

.. differs from academic cartography in that it links geographic knowledge with political power.

Image above adjusted to include representations of the islands that lie within the waterway (islands added by Lori Waters)

D. Maps as works of art (and often also functional)

Maps of Whistler Blackcomb, Grouse Mountain and Sun Peaks among James Niehues many paintings.

CBC News • Posted: Mar 31, 2019 6:00 PM PT | Last Updated: March 31, 2019

Maps as works of art

http://www.antonthomasart.com

E. 'Vicarious' travel = experienced in the imagination

5. Map Scales

The concept of scale is fundamental to mapping ...
Scale represents the reduction compared to the distances on the earth's surface.

Without a scale, it is more a 'diagram', (not a map)
Scale can be given in 3 ways:
a. Verbal statement

- For example, 1 cm to $10 \mathrm{~km}, 1$ inch to 1 mile
- Verbal statements are simple to understand
- They are 'unit-dependent'

b. Ratio or 'representative fraction (RF)'

- This states the reduction as a ratio of fraction e.g. 1:100,000 or $1 / 100,000$
- It is free of specific units (metric or imperial)
- It can describe map series and datasets e.g. 1:50,000
- 1:20,000 is a larger scale than 1:50,000 (reduced less)
$(1 / 20,000$ IS a bigger fraction than $1 / 50,000)$

c. Scale bar

- Graphic, units are stated e.g. kilometres or miles
- Scale bar adapts in size with zoom to match display

Kilometres

‘Classic' traditional scale bars
common world scales / map series / data

1:1,000,000 (world)
1:500,000

1:250,000 (federal/provincial) Medium
(1:125,000)

1:50,000 (federal)
1:20,000 (provincial)
>1:10,000 (municipal)
Cadastral (civic)

common world scales / imperial series Canada converted to metric post world war II

1:506,880 $1^{\prime \prime}=8$ miles -> $1: 500,000=1 \mathrm{~cm}: 5 \mathrm{~km}$

1: $253,440 \quad 1$ " $=4$ miles $\rightarrow 1: 250,000=1 \mathrm{~cm}: 2.5 \mathrm{~km}$

1: $63,360 \quad 1 "=1$ mile $\quad \rightarrow 1: 50,000 \quad=1 \mathrm{~cm}: 0.5 \mathrm{~km}$
1 mile $=1760$ yards $=5280$ feet $=63,360$ inches

The world is metric except for Liberia, Myanmar and USA
6. Coordinates: e.g. N-S relative to the equator; E-W relative to Greenwich

- The graticule is the imaginary grid of lines east-west lines of latitude (parallels) and north-south lines of longitude (meridians)

Friday's lecture and the following Moodle quiz

