Places in the World whose Climates match with places in RUSSIA

Thematic mapping: which city is most like Moscow ?

Coordinate map systems and Georeferencing

Bear Sightings, Prince George 2004-2006

Registered map layers
digital mapping needs coordinates

- local for local mapping
- global for global datasets

Registration vs Referencing

Registration:
-lining up the layers together

Georeferencing:

Linking layers to coordinates

rubboer duck

Flat Earth options:- if only it was flat, this would be a very short lecture

We're pretty sure the Earth is not 'flat': the Rockies from Space Station

Coordinate map systems

1.The Earth's Graticule: Latitude - Longitude

- The graticule is the imaginary grid of lines running east-west lines of latitude (parallels) and north-south lines of longitude (meridians)
- The system was first devised by Hipparchus (190-120 BC)

1a. 'Geographic Referencing'

We can identify locations by latitude, longitude

e.g. UNBC campus agora

In decimal degrees: $\quad 53.892381,-122.813699$ (N, W)
See: http://maps.google.ca (right-click)

In degrees, minutes, seconds:
$53^{\circ} 53^{\prime} 33^{\prime \prime}$ (N) $122^{\circ} 48^{\prime} 50^{\prime \prime}$ (W)
OR

In degrees and decimal minutes (e.g. GPS)
53° 53.543' $\mathrm{N} \quad 122^{\circ}$ 48.822' W

Latitude

- Latitude = the vertical angle from the centre of earth to the location
- e.g. Prince George is at $54^{\circ} \mathrm{N}$

Quesnel is at $53^{\circ} \mathrm{N}$
$\left[1^{\circ}=\sim 111 \mathrm{~km}\right]$

- Latitude is 0 on the equator

'Sexagesimal system'

- 1 degree $=60^{\prime}$ (minutes)

$$
\left[1^{\prime}=\sim 2 \mathrm{~km}\right](111 \mathrm{~km} / 60)
$$

- $1^{\prime}=60^{\prime \prime}$ (seconds)

$$
\left[1^{\prime \prime}=\sim 30 \mathrm{~m}\right](2 \mathrm{~km} / 60)
$$

Longitude

Longitude $=$ the angle formed between line from centre of earth to the (arbitrary) 'prime meridian' running through Greenwich, England and the local meridian. The 0 location is arbitrary (1884)

Longitude ranges from
0 to $180 \mathrm{~W} / 180 \mathrm{E}$ (the same line)
Prince George $=123^{\circ} \mathrm{W}(-123)$
Longitude

Meridian Room (or Cassini Room) at the Paris Observatory, The Paris meridian is traced on the floor. Since 1634

'Geographic' referencing issues

a. Geographic is not decimal, it is 'sexagesimal' (= base 60)

1 degree $=60$ minutes
1 minute $=60$ seconds
Decimal degrees: $58^{\circ} 30^{\prime}=58.5$ Decimal degrees: $58^{\circ} 36^{\prime}=58.6 \quad 36 / 60=0.6$ Decimal degrees: $58^{\circ} 36^{\prime} 36^{\prime \prime}=58.61 \quad 36 /\left(60^{*} 60\right)=0.01$
b. It is suitable for storing global datasets, but ...
with negative values south and west of 0,0
e.g. in a digital system, $P G=54,-123$

c. The main issue with mapping with Longitude

1 degree longitude varies widely from ~111 km at the equator to 0 km at poles

It is not rectangular
half the distance at $60^{\circ} \mathrm{N} / \mathrm{s}$

Equator
i.e. 1 degree has no fixed length

Equirectangular map display

... as if degrees of latitude and longitude were equal
$\mathrm{E}-\mathrm{W}$ stretching away from the equator: 2 x at 60° latitude

-1 degree longitude varies from $0 \rightarrow 111 \mathrm{~km}$
->East-west stretching away from equator (as a degree is treated uniformly)
'geographic' is OK for data storage,
 but not for display

Local example from the phone book

2007: scale is consistent

2008: horizontal scale is almost double

Latitude and Longitude

Length of One Degree of Longitude			Length of a Degree of Latitude		
Latitude	Kilometres	Miles	Latitude	Kilometres	Miles
$0^{\text {o }}$	111.32	69.17	$0^{\text {o }}$	110.57	68.71
10°	109.64	68.13	10°	110.61	68.73
20°	104.65	65.03	20°	110.70	68.79
30°	96.49	59.95	$30^{\text {o }}$	110.85	68.88
40°	85.39	53.06	40°	111.04	68.99
$50{ }^{\text {o }}$	71.70	44.55	50°	111.23	69.12
60°	55.80	34.67	60°	111.41	69.23
70°	38.19	23.73	70°	111.56	69.32
80°	19.39	12.05	80°	111.66	69.38
90°	0.00	0.00	90°	111.69	69.40

1b. The Geoid

Earth is not a perfect sphere, it is ellipsoidal .. The difference between the length of the two axes = the amount of 'polar flattening' is about $1 / 300$ (0.3%) and 1° latitude is slightly longer as you move away from the equator

An cllipsoid is formed by rotating an cllipse on its shorter axis

99.7\% soccer ball
0.3\% 'football'

Official Ellipsoids

 (part of the study of Geodesy) (from J. Snyder, Map Projections--A Working Manual)> Equatorial Polar

An ellipsord is formed by rotating an cllipse

Name	Date	Radius \boldsymbol{a} (metres)	Radius \boldsymbol{b} (metres)	Polar Flattening
WGS 84	$\mathbf{1 9 8 4}$	$\mathbf{6 , 3 7 8 , 1 3 7}$	$\mathbf{6 , 3 5 6 , 7 5 2}$	$\mathbf{1 / 2 9 8}$
GRS 80	1980	$6,378,137$	$6,356,752$	$1 / 298$
WGS 72	1972	$6,378,135$	$6,356,750$	$1 / 298$
International	1924	$6,378,388$	$6,356,912$	$1 / 297$
Clarke	$\mathbf{1 8 6 6}$	$\mathbf{6 , 3 7 8}, \mathbf{2 0 6}$	$\mathbf{6 , 3 5 6 , 5 8 4}$	$\mathbf{1 / 2 9 5}$
Everest	1830	$6,377,276$	$6,356,075$	$1 / 301$

Datums (do we need to know this?)

'Datum' = "a set of values that serve as a base for mapping"
a. North American Datum, NAD27 (1927) based on Clarke 1866
b. North American Datum, NAD83 based on GRS80/WGS 1984
-> NAD27 was the datum for mapping in most of the 20th century
-> NAD83 is the current datum for digital mapping / GIS data
-> The two can differ by ~ 70 metres (x) and 170 metres (y)
New millennium: you can 'almost' forget about NAD27 but when UNBC opened in 1994, we still had a lot of NAD27 mapping

Lat/long coordinates given in black in degrees/minutes

Universal Transverse Mercator (UTM) System

this bit is harder so pay attention ...
The world is divided into $60 \times 6^{\circ}$ longitude (vertical) strips numbered 1-60 from 180 degrees West to 180 degrees East

UTM Zone Numbers

 Universal Transverse Mercator (UTM) System
either developed by United States Army Corps of Engineers or German Wehrmacht

Canada: UTM zones - adopted in 1947 for mapping

- the width of each zone varies from $666 \mathrm{~km}(6 \times 111 \mathrm{~km})$ at the equator ...to $\sim 338 \mathrm{~km}(6 \times 55.8 \mathrm{~km})$ at $60^{\circ} \mathrm{N} / \mathrm{S}$, with a 'central meridian' in the middle

UTM coordinates

 are in metresWithin each zone ...
The ' Y ' coordinate Northings (N):
measured from the Equator
(0) - to the north pole $(10,000,000)$... in metres
[this is the metric system]
e.g. UNBC ~ 5,972,000

UTM coordinates

The ' x ' coordinate

- this is the hardest part ...

Eastings (E) for each zone

- based on the zone

Central Meridian at 500,000
the easting value increases to the east, but not > 1,000,000
the easting value decreases to the west but not below zero
e.g. UNBC ~ 512,000
$B C$ range $=\sim 300,000-700,000$
Zone must also be given as Coordinates repeat for each zone Grrrr ... who came up with this crazy scheme !?

Canadian topographic mapping includes UTM and lat/long coordinates Blue grid squares in this map are $1000 \mathrm{~m}=1 \mathrm{~km}$

UTM : Eastings are 6-digit, Northings are 7-digit (in Canada)

BC: UTM zones

How to deal with multiple UTM zones: Eastings switch from ~700,000 at the west edge of one zone to $\sim 300,000$ at the east edge of the next zone

BC Albers coordinate system

BC uses UTM for local areas
Albers for the whole province As with UTM, also in metres

Unlike UTM, eastings and northings are often both 7-digit, Or both 6-digit or one of each.

Developed by provincial ministry Forestry/Geomatics in Smithers

Canada Albers Equal Area Conic

Central Meridian: -96 Latitude Of Origin: 40

Download Canada map data using Geographic, Albers, UTM ... or Web Mercator (2019)

Summary: BC mapping coordinates

Could be one of:

1. Geographic - lat. / long. - global reference
2. UTM - zones 7-11

- local/regional mapping

3. BC Albers

- BC provincial data
- Federal data

4. Canada Albers

Why is it important - because we 'import' data from different sources .. and they need to line up

It makes more sense here : - view these at home or in lab
PGMAP: https://pgmap.princegeorge.ca/Html5Viewer/index.html?viewer=PGMap
UTM coordinates - or lat/long + web Mercator

BC IMAP: http://maps.gov.bc.ca/ess/hm/imap4m/
UTM, Lat/long and Albers
Google Earth: Lat/long and UTM

Natural Resources Canada and BC Forestry- UTM grid
https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/maps/9779

UTM coordinates quiz on Moodle - today or Monday, due one week later

PGMap viewer

https://pgmap.princegeorge.ca/Html5Viewer/index.html?viewer=PGMap

The last 3 words on coordinates https://what3words.com

Earth surface ($510 \mathrm{~m} \mathrm{~km}^{2}$) is divided into (57 trillion) $3 \times 3 \mathrm{~m}$ squares, each coded by 3 unique word combination
Canadian rescue services:
https://what3words.com/news/emergency/three-words-to-tell-canadian-emergency-services-exactly-where-you-are
Lonely Planet
https://venturebeat.com/mobile/lonely-planet-adopts-what3words-geocoded-navigation-system-to-find-places-using-just-3-words/

