Remote sensing of the planets - the final frontier

A vast literature and methodology exists in optical and radar astronomy that parallels and often exceeds our methods used in remote sensing

https://www.gfd-dennou.org/library/wtp/welcome.htm

Methods and wavelengths used on planetary missions - old table

METHOD		INFORMATION	INTERPRETATION	MISSION
Gamma-Ray Spectroscopy	Gamma rays	Gamma spectrum	K, U, Th Abundances	Apollo 15, 16: Venera
X-ray Fluorescence spectrometry	X-rays	Characteristic Wavelengths	Surface mineral/ chemical comp.	Apollo; Viking Landers
Ultraviolet Spectrometry	UV	Spectrum of Reflected sunlight	Atmospheric Composition: H,He,CO ₂	Mariner; Pioneer; voyager
Photometry	UV, Visible	Albedo	Nature of Surface; Composition	Earth Telescopes; Pioneer
Multispectral Imagers	UV, Visible, IR	Spectral and Spatial	Surface Features; Composition	On most missions
Reflectance Spectrometers	Visible, IR	Spectral intensities of reflected solar radiation	Surface Chemistry; mineralogy; processes	Telescopes; Apollo
Laser Altimeter	Visible	Time delay between emitted and reflected pulses	Surface Relief	Apollo 15,16,17
Polarimeter	Visible	Surface Polarization	Surface Texture; Composition	Pioneer; Voyager

Methods and wavelengths used on planetary missions (continued)

Infrared Radiometer (includes	Infrared	Thermal radiant intensities	Surface and atmospheric temperatures;	Apollo; Mariner; Viking;
scanners) Microwave Radiometer	Microwave	Passive microwave emission	compos. Atmosphere/Surface temperatures; structure	voyager Mariner; Pioneer Venus
Bistatic Radar	Microwave	Surface reflection profiles	Surface Heights; roughness	Apollo 14,15,16; Viking
Imaging Radar	Microwave	Reflections from swath	Topography and roughness	Magellan; Earth systems
Lunar Sounder	Radar	Multifrequency Doppler Shifts	Surface Profiling and imaging; conductivity	Apollo 17
S-Band Transponder	Radio	Doppler shift single frequency	Gravity data	Apollo
Radio Occultation	Radio	Frequency and intensity change	Atmospheric density and pressure	Flybys and Orbiters

* Adapted from Billy P. Glass, Introduction to Planetary Geology, 1982, Cambridge University, Press

Hyperspectral visible-NIR Reflected solar radiation Surface Mars

Wide-field Infrared Survey Explorer (WISE) since Nov 20, 2009 ... Succeeded by NEOWISE (2013) Looking out into space Detectors at 3.4, 4.6, 12 and 22 microns, chilled to 10 Kelvin

Hubble telescope 1990 0.1 – 0.8 microns, 535km

James Webb Space Telescope 0.6 – 28 microns, 1.5 million km Launched Dec 25, 2021

https://science.nasa.gov/mission/neowise

Images of Jupiter

JWST

Hubble

DSCOVR: Deep Space Climate Observatory - 2015 1 million miles away – ~10km resolution – orbiting at 'Lagrange point' L1 = gravitational pull

Proposed by AI Gore,1998 to study earth and solar wind The first satellite orbiting in deep space 'Goresat'

'Dark side' of the Moon crossing Earth from DSCOVR satellite

daily images from EPIC

Earth Polychromatic Imaging Camera (EPIC)

http://epic.gsfc.nasa.gov/

1. EPIC: Earth Polychromatic Imaging Camera, 10 bands

EPIC Wavelengths and main data products

Wavelength(nm)	Full Width (nm)	Primary Application
317.5 ± 0.1	1 ± 0.2	Ozone, SO ₂
325 ± 0.1	2 ± 0.2	Ozone
340 ± 0.3	3 ± 0.6	Ozone, Aerosols
388 ± 0.3	3 ± 0.6	Aerosols, Clouds
443 ± 1	3 ± 0.6	Aerosols, Clouds
551 ± 1	3 ± 0.6	Aerosols
680 ± 0.2	3 ± 0.6	Aerosols, Vegetation
687.75 ± 0.2	0.8 ± 0.2	Aerosols,
		Vegetation, Clouds
764 ± 0.2	1 ± 0.2	Cloud Height
779.5 ± 0.3	2 ± 0.4	Clouds, Vegetation

2. NISTAR: Radiometer to measure radiance UV-NIR - monitor earth status

<u>SOHO</u> the Solar & Heliospheric Observatory

.. is a project of international collaboration between \underline{ESA} and \underline{NASA} to study the Sun from its core to the outer corona and the solar wind.

Nov 18, 2009: 195 nm

304 nm (also 171 and 284)

1995, cost €1 billion; Sensor: Extreme ultraviolet Imaging Telescope (EIT) Located at sun-earth L1 gravitational orbit

<u>SOHO</u>, the Solar & Heliospheric Observatory

.. is a project of international collaboration between \underline{ESA} and \underline{NASA} to study the Sun from its core to the outer corona and the solar wind.

Later images - Nov 19, 2014: 195 nm

304 nm (also 171 and 284)

Daily images: https://umbra.nascom.nasa.gov/newsite/images.html

Partial solar eclipse by the Moon

Types of Remote Sensing Missions

Fly-bys

Mariner Missions, Mercury and Venus

Orbiters

Landers / Rovers

Survey or Luper Londor 1066

New Horizons 2007, Jupiter and Pluto

Mars Reconnaissance Orbiter

Mara Davara 2002

After Apollo (1972), the Moon was not revisited until an unmanned spacecraft, Clementine orbited to conduct mapping studies February 19 - April 21, 1994, using UV/Visible, Near IR, and Lidar

Other specialized products include detailed maps the distribution of several chemical elements, such as iron (Fe) and titanium (Ti), determined by analyzing reflectance variations 750 and 950 nm, where these elements absorb radiation.

In mid-April 2000, the Terra spacecraft was turned upside down and pointed at the Moon. This ASTER image was acquired at that time, showing band 3 (NIR) in grayscale.

More recent Lunar missions

Right: China: Chang'e-1 (2007)

Chang'e-3 (2013) soft-landed on moon

Below: Japan - Kayuga Launched 2007, impacted on lunar surface 2009 (near South Pole)

India: Aug 2023

https://www.cnn .com/2023/08/2 2/world/chandra yaan-3-landingphotos-indiascn/index.html

http://photojournal.jpl.nasa.gov/index.html

satellite observation links: Sun 186 Mercury 1315, Venus 153, Earth 2578, Mars 12658, Jupiter 1151, Saturn 3373, Uranus 61, Neptune 89, Dwarf Planets e.g. Pluto 817

Mercury Messenger: Mercury Surface, Space Environment, Geochemistry, & Ranging

Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA)- 15m

Venus

From Magellan

-first imaging device launched from Shuttle 1989

Planet is Cloud covered

Radar 100m

Composite colours based on elevations

http://www.solarviews.com/eng/venus.htm

Mars Global Surveyor (1996) Instruments

DEM resolution in z = 30 cm! (N. Pole to S. Pole transect)

https://www.google.ca/mars/

Elevation, Panchromatic, Thermal

Suspected rock glacier, Mars Orbiter Camera JPL/NASA

Resolution = 1m

MOC has produced over 250,000 images to 2020

Thermal Emission Spectrometer

6 to 50 (µm),

143 bands

Onboard Mars Global Surveyor

1996-2006

Mars Express (ESA,2003): High Resolution Stereo Camera Resolution 2-10m

The "hourglass" feature HRSC, ESA

Mars Express: High Resolution Stereo Camera

Mars Reconnaissance Orbiter (2005)

Onboard:

- HiRISE High Resolution Imaging Science Experiment (Visible and infrared wavelengths)
- CRISM Compact Reconnaissance Imaging Spectrometer for Mars
- CTX Context Imager Takes low resolution overview images for geological context

Mars Reconnaissance Orbiter: HiRISE

2005-

MRO HIGH RESOLUTION IMAGING SCIENCE EXPERIMENT (HIRISE) -1 foot (0.3m) three bands, 400–600 nm (blue-green), 550–850 nm (red) 800–1,000 nm (near infrared)

http://hirise.lpl.arizona.edu/nea.php

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter (2005)

CRISM covers wavelengths from 0.362 to 3.92 microns (362 to 3920 nm) at 6.55 nanometers/channel, to identify a broad range of minerals on the Martian surface.

False colour infrared: Red = dust, blue = water ice

Green = polyhdrated sulphate

Thermal Emission Imaging System (THEMIS) 2001

This is a special camera on the Mars Odyssey spacecraft (2001). Its main tasks are mapping rock mineralogies and detecting heat, which yields information on the Martian surface.

THEMIS is a multi-wavelength camera

5 visible bands: (microns) 0.425, 0.540, 0.654, 0.749, 0.860 microns

10 thermal infrared bands: 6.78, 7.93, 8.56, 9.35,10.21, 11.04, 11.79, 12.57,14.88

Resolution:

visible images, 59 feet (18 meters) per pixel infrared images, 328 feet (100 meters) per pixel

http://themis.asu.edu/gallery

Hydrated sulfate deposits

The Grandest Canyon of all isn't on Earth, it's on the planet Mars - Valles Marineris, or Mariner Valley.

Mars Exploration Rover Missions 2004

https://youtu.be/JUbQM47QXwQ

https://www.missionjuno.swri.edu

Jupiter- Juno, 2023:

Saturn from Cassini probe, 2016

Neptune / Uranus from Webb telescope, 2022

Pluto and Charon (moon) pre-2015

New Horizons Mission 2015

Launched 2006 Alice Ultraviolet sensor and Ralph ('The Honeymooners')

Landslides on Charon

The Nine Planets

A Multimedia Tour of the Solar System:

one star, eight planets, and more

by Bill Arnett

http://www.nineplanets.org/

Pluto demoted, to dwarf planet 2006

Pluto was named in 1930 by Venetia Burney (1918-2009)

The Planets and Their Moons			
PLANET	MOONS	MOON NAMES	
Mercury	0		
Venus	0		
Earth	1	Moon	
Mars	2	Phobos, Deimos	
Jupiter	62	Io, Europa, Ganymede, Callisto, Amalthea, Himalia, Elara, Pasiphae, Sinope, Lysithea, Carme, Ananke, Leda, Metis, Adrastea, Thebe, Callirrhoe, Themisto, Kalyke, Iocaste, Erinome, Harpalyke, Isonoe, Praxidike, Megaclite, Taygete, Chaldene, Autonoe, Thyone, Hermippe, Eurydome, Sponde, Pasithee, Euanthe, Kale, Orthosie, Euporie, Aitne, plus others yet to receive names	
Saturn	33	Titan, Rhea, Iapetus, Dione, Tethys, Enceladus, Mimas, Hyperion, Prometheus, Pandora, Phoebe, Janus, Epimetheus, Helene, Telesto, Calypso, Atlas, Pan, Ymir, Paaliaq, Siarnaq, Tarvos, Kiviuq, Ijiraq, Thrym, Skadi, Mundilfari, Erriapo, Albiorix, Suttung, plus others yet to receive names	
Uranus	27	Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck, Miranda, Ariel, Umbriel, Titania, Oberon, Caliban, Sycorax, Prospero, Setebos, Stephano, Trinculo, plus others yet to receive names	
Neptune	13	Triton, Nereid, Naiad, Thalassa, Despina, Galatea, Larissa, Proteus, plus others yet to receive names	
Pluto	1	Charon	
TOTAL	139		

Enceladus, Moon of Saturn, by Cassini Orbiter, 2005

Phobos is the larger of the two natural satellites of Mars, the other being Deimos. The two moons were discovered in 1877. It is named after Phobos, the Greek god of fear and panic, twin brother of Deimos. Mars' two tiny moons – Phobos and Deimos – are the sole survivors of a giant impact on the Red Planet

Meteor and Comet Impact Hazards: North American Impact Craters Data from Observer's Handbook 2004, Royal Astronomical Society of Canada http://astro.wsu.edu/worthey/astro/html/lec-meteor-cc.html

Pingualuit Crater, Northern Quebec

http://earthobservatory.nasa.gov/IOTD /view.php?id=8472

Louis-Babel Ecological Reserve Gagnon

René-Levasseur Island

The crater (diameter 100km) was caused by the impact of a 5 kilometer diameter asteroid about 215.5 million years ago (Triassic Period)

Manicouagan

Lecture topics for second exam

10-13	Feature extraction / Mid-Term Exam (15%)	Lab 5: Feature extraction
16-20	Environmental Change / Thermal RS	Lab 6: Environmental Change
23-27	Glaciers / Env. Change class demos	Lab 7: Glaciers
November		
(Oct)30-3	Change detection / DEMs	Lab 8: Change detection

(Oct)30-3	Change detection / DEMs	Lab 8: Change detection
6-9	Microwave-RADAR / LiDAR	Lab 9: DEMs
13-17	Projects / High resolution sensors	Lab 10: Projects-data
20-24	Hyperspectral & correction / Planetary RS	Lab 11: Data processing
27-Dec 1	RS Software-course review / Exam2 (10%)	Lab 12: project write-up
Dec 5	Project demos – 5 minutes each	

Evaluation 100%

- Exams: Oct 12, Nov 30 + 5% take-home Quiz
- Environmental Change exercise, Oct 25 ٠
- Article review Nov 17 .
- Lab exercises 5 x 5%
- Final project, Dec 7

30% Exam 2: Nov 30 (10%) 10% lecture topics since midterm; 10 questions, 25% 1 mark each

10%

25%

Sample exam question (previous): Solar radiation peaks in the visible (green) wavelengths, while terrestrial radiation (emitted by Earth) peaks in the thermal infra-red wavelengths. Can you explain why this difference occurs?