Unsupervised Classification

Classification = simplification, mapping

The early promise of satellite imagery: (1970s-80s)

- A. Rapid map updating
- B. Automated mapping of 'Land Cover'

avoid manual digitizing ... by classifying <u>multispectral</u>
band data

Manual digitizing (yawn ...)

e.g. BC VRI (vegetation resource inventory)

BC TRIM data layers 7027 x 1:20,000 tiles

NTS 1:50,000 example

All federal NTS map Sheets (13,370) created from Air photos

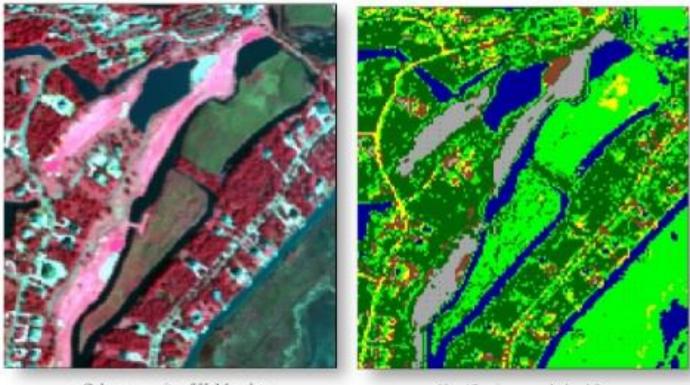
Human interpretation / classification relies on attributes such as: Shape, pattern, texture, shadows, size, association, <u>tone</u>, <u>colour</u>

Algorithms mostly use Digital Number (DN) = digital version of tone/colour

Remote Sensing Classification

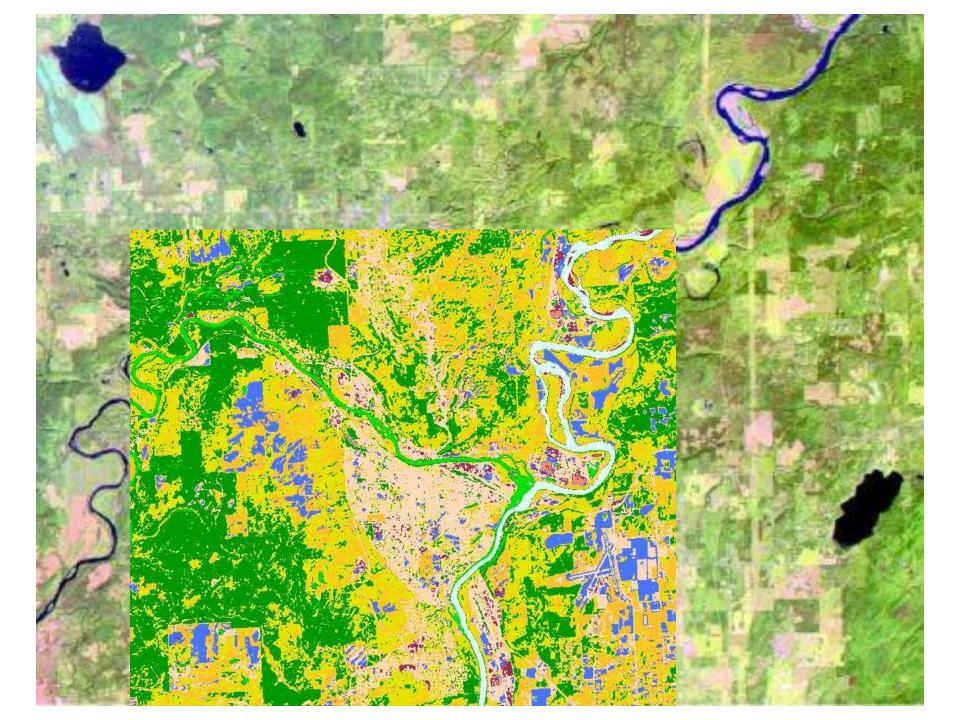
- Automated grouping of similar pixels using <u>multispectral</u> DNs
- Software developed following 1972 (Landsat 1)
- Digital alternative to manual mapping of Land Cover

Information Classes Derived from an ISODATA Unsupervised Classification Using 10 Iterations and 10 Mean Vectors of an Area Near North Inlet, SC



a. Color composite of HyMap data.

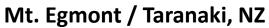
c. Classification map derived from



Land Use v Land Cover (LULC) e.g. parks

Sugarbowl-Grizzly Den

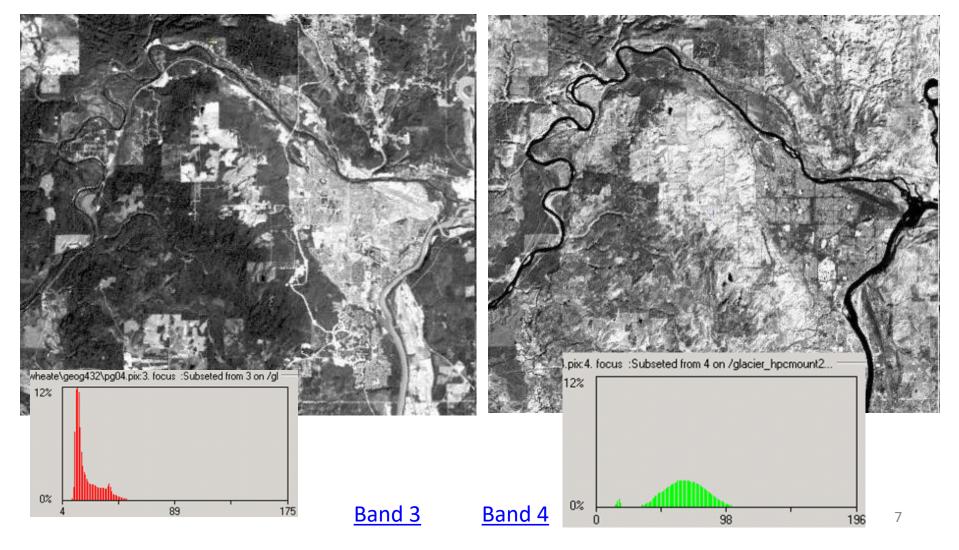
Bowron Lakes

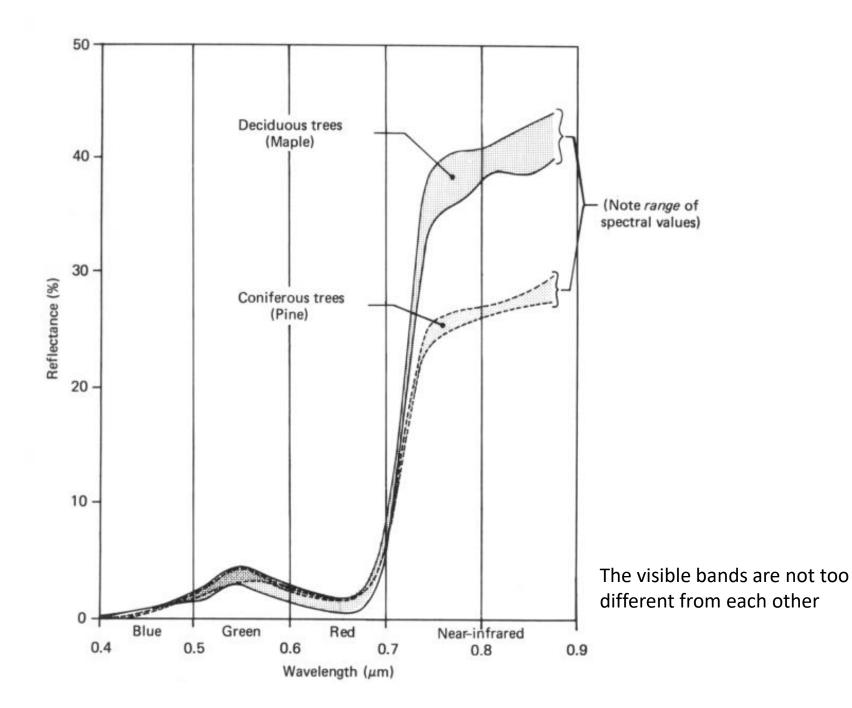


Can we use just one band to classify ?

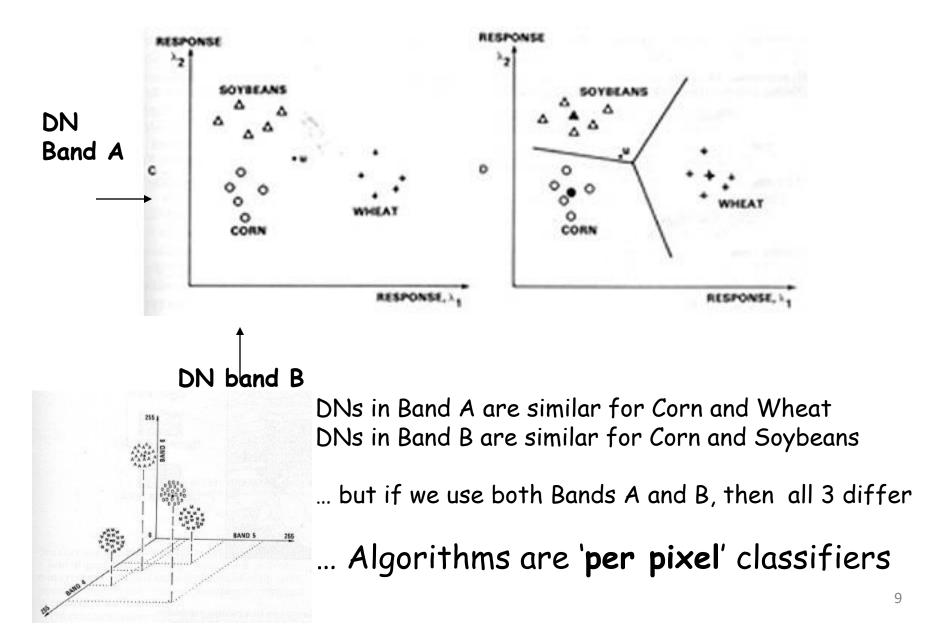
One image band could be treated as a monochrome air photo (interpretation)

Digital Numbers from one band alone are rarely enough - features are not unique



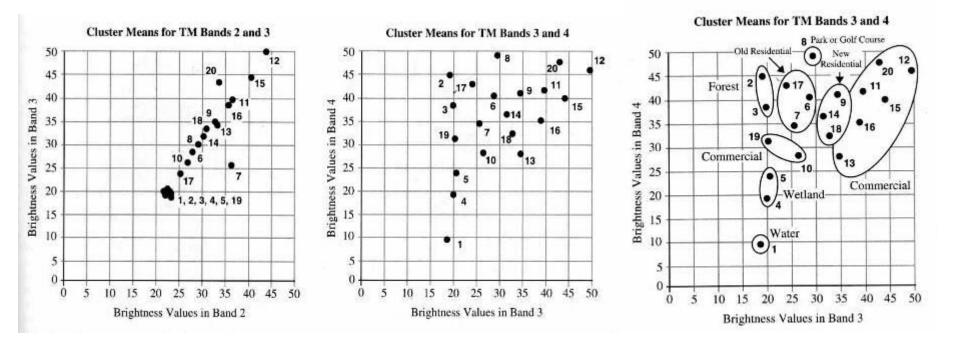


The role of multispectral sensing in classification



Unsupervised classification = 'clustering'

Example of Visible bands only (2,3) versus Visible and Near-IR

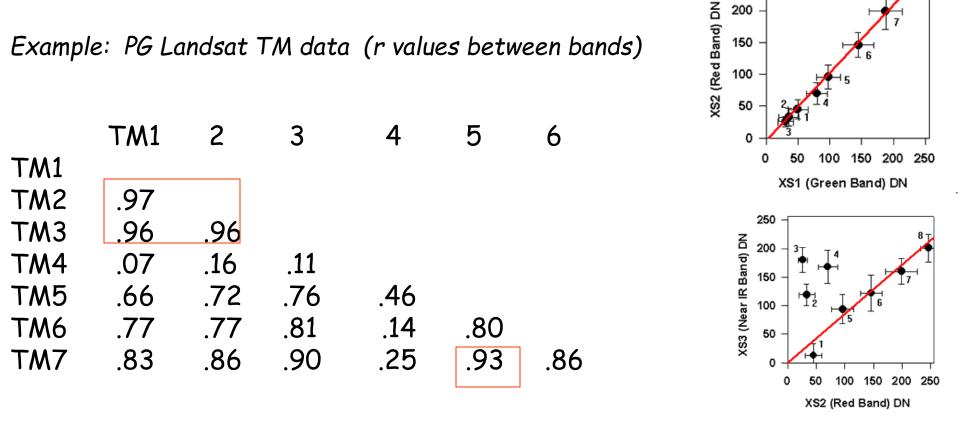


Two bands are shown for simplicity

Input bands selected - minimum 3 bands;

Note: you can only display 3 bands, but you can input more than 3 (no limit)

band correlation coefficients and scatterplots



250

The Visible bands are highly correlated (similar) .. (r = .96 to .97)

.. so also are TM bands 5 and 7 (r = .93)

band 4 (near-IR) is not very correlated with Visible or MIR (nor thermal) Note: these values will vary for different environments e.g. urban, desert, forested

Classification: Band / Channel Selection

How to choose which ones to use:

- 1. Low correlation e.g. TM 3-4-5 or 2-4-7 (Visible-NIR-MIR)
- 2. Past experience, visual examination, logical thinking
- 3. Channels that separate the features we want to identify (based on DNs / spectral curves / histograms)

4. Or simply just use them all ? ... (except the thermal band)often this can confuse the classifier and not find clusters

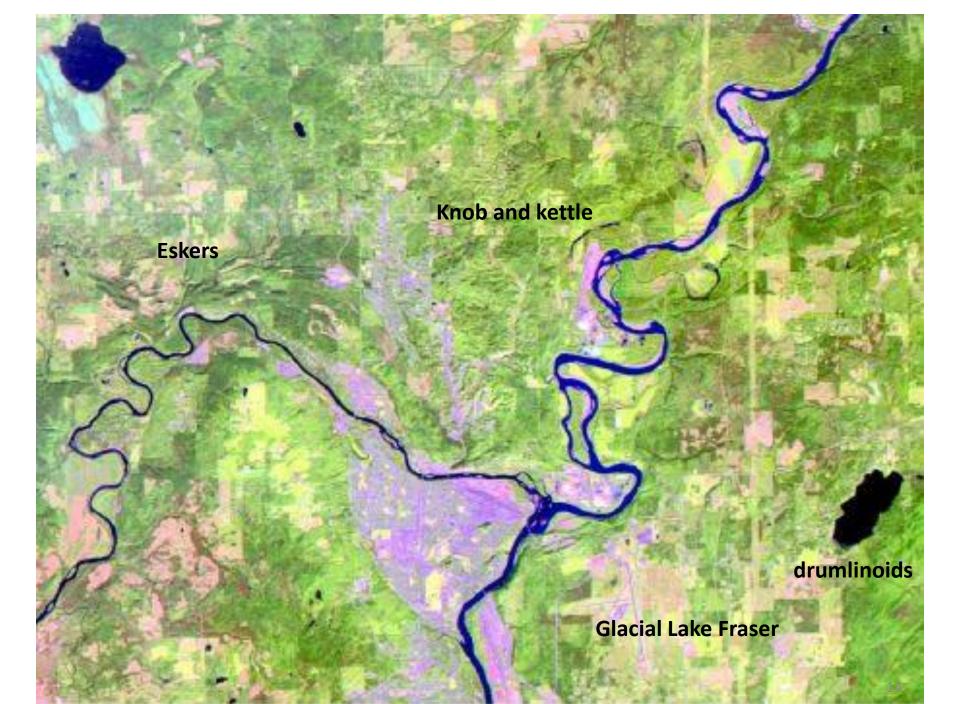
Band / channel selection Landsat 5 Thematic Mapper (TM) : 1-7 Landsat 8/9 Operational Land Imager (OLI) 1-9

Visible bands Red-Green-Blue

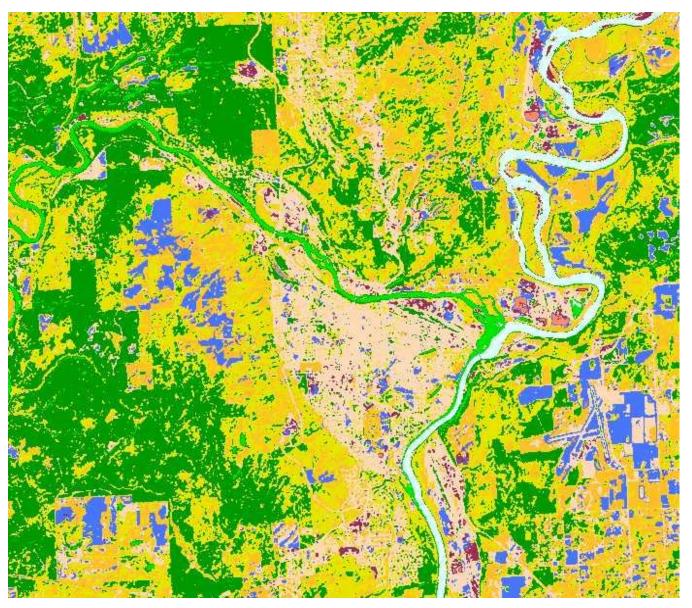
SWIR – NIR- Red

You would NOT select 3 visible bands to classify

The visible bands are similar - and thus the composite is low in contrast



Unsupervised result - 10 classes (clusters)



This is a new <u>channel</u> in your .pix file - It's not a band

Colours are random

Note: urban classification is NOT often easy!

Unsupervised classification

Characteristics

-user initially needs little 'a priori' knowledge of area

-The software clusters pixels by natural DN groupings -based on similarity and contrast ~ 'natural breaks'

Steps

- determine how many classes / clusters
- determine which input bands / channels to use
- run classifier : K-means or Isodata
- Rerun with more clusters if needed
- assign names to classes (merge classes if needed)

Unsupervised classification – algorithms and iterations PCI .. Fuzzy K-means is less common in GIS software

1. K-means minimises within cluster range of DNs ('K' = clustering)

2. Fuzzy K-means enables mixed membership, based on distribution of the clusters

3. Isodata (Iterative Self-Organizing Data Analysis Technique Algorithm) can also merge or split clusters, so the number of clusters is more flexible

The ISODATA algorithm is similar to the k-means algorithm with the difference that **the ISODATA algorithm allows for different number of clusters while the k-means assumes that the number of clusters is known** *a priori*. The objective of the k-means algorithm is to minimize the within cluster variability.

Unsupervised - how it works YIKES! (do we need to know this?)

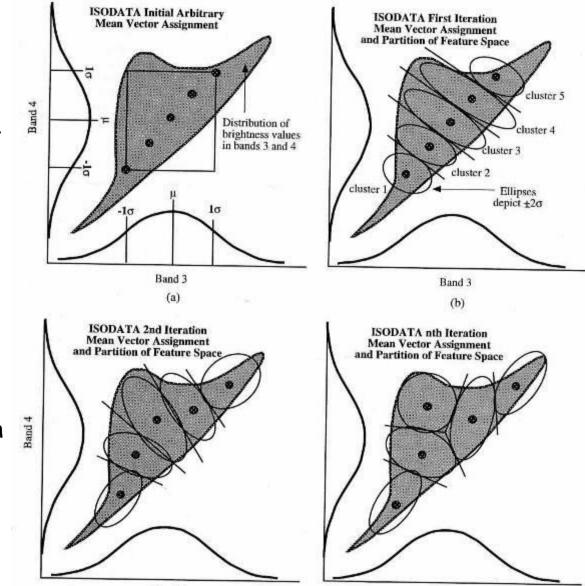
Algorithm starts with statistical seed points

Assigns each pixel to the closest seed

□ Calculates group mean in 'n-dimensional' space

Re-assigns pixels to the closest group mean

 Re-calculates group mean
Iterates (10 ?) until relatively little change and fixes groupings



Band 3

classification report 1 iteration

Note: # clusters with 0 pixels

DN values for bands 3,4,5 averages

Final step .. Assigning names to clusters (and merge some)

5	Classifica	tion Report	100			
Cl	assifica	ation Result (Channel: 13			
Nu	umber of	Clusters: 10				
С1	uster	Pixels	Mean	Std Dev :		1
(7)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000		
(9)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000		
(8)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000		
(10)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000		
(2)	567257	19.93583 46.80288 34.35418	2.43998 6.96298 5.57951		S
(1)	40287	21.21982 23.42244 19.16435	4.59113 6.07720 5.15152	≡ >	Ś
(3)	394735	24.69793 59.00346 50.67980	5.14680 7.70974 7.30103		
(4)	72072	28.48148 68.95187 70.11754	6.31398 12.54581 6.67919		
(5)	771	63.92348 69.70298 90.39559	11.94499 11.32545 16.27601		
(6)	81	92.85185 101.97531 103.75309	7.89297 8.75027 17.34226		
Го	otal	1075203			-	л ³ -
•					•	
Ç	≥?			Save	Close	

After 16 iterations and 16 classes/clusters

*	Cla	ssification	Report	_ (8)	85354	122,33620 85,34046 19,40815	10.20870 8.68392 16.7561
Classifica Classifica	tion Input Ch tion Result (hannels: 3,4	ans Unsupervised ,5	(9)	79592	151.05591 105.45887 20.59924	9,22842 8,13428 20,61743
Number of I Cluster	Clusters: 16 Pixels	Mean	Std Dev :	(10)	60789	175,72850	8,52307
(2)	296774	23,24140	8,24662			125,70449 25,36989	8,00244 25,7900
		44.77742 32.44915	8,91783 10,04080	(11)	55539	201.23238	7,64972
(3)	292356	24,48324 67,65602	7,14404 10,67916			142.52280 17.82207	7,16980 16,8100
		49,51679	9,53926	(12)	54187	225,29511	7,08180
(4)	155525	24.75149 107.39487 74.22362	5,03961 18,20386 13,35878			159,06710 16,18565	6,45671 13,7170
(1)	135750	42.07941	13,08230	(13)	56164	247.23974	6,06449
·	100100	26,82458 16,47926	8.12628 11.00162			172,45732 13,11189	4,56608 7,50873
(5)	151100	42.87475	9,25817	(14)	113965	254,84619	0,99330
		60,36603 89,47187	13,13133 18,67191			185,52277 12,44097	4.41832 4.33174
(7)	86198	84,79987 59,46275	12,60066 9,37685	(15)	51887	254,93781	0.76476
		20.03181	14.03484			202,95095 14,38227	5,59141 7,67388
				10			

(16)

33140

254,99879

225,13265

13,28431

Fuzzy classification – each pixel has potential membership in more than one cluster

0.08035

8.29124

3.35810

Merging and adding classes

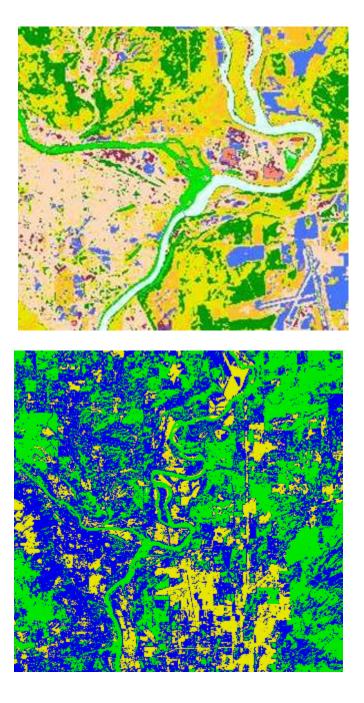
Merging - if clusters are not really separate features; Clusters are merged if they overlap spatially or are similar spectrally. (visually examine image)

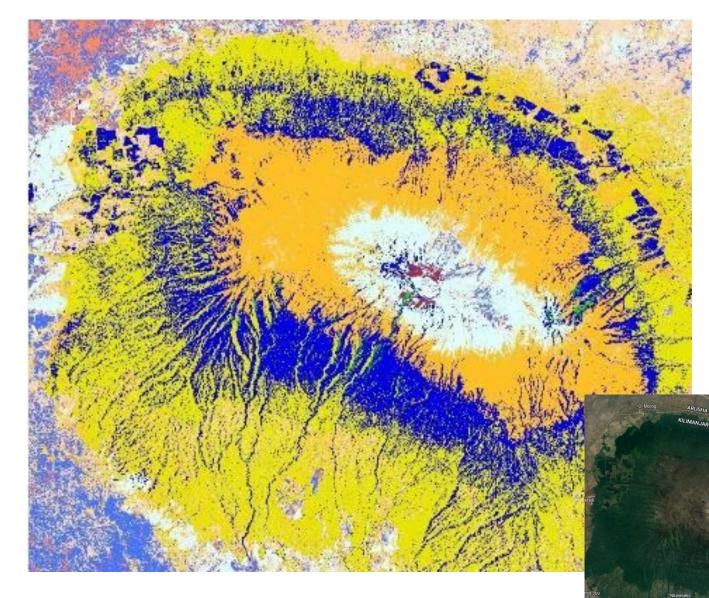
Splitting / adding

If one cluster covers too much area – run again with more clusters

Can also generate many clusters, and then group merge later ...

One ploy is to make many clusters (e.g. 50-100 and plan to merge)





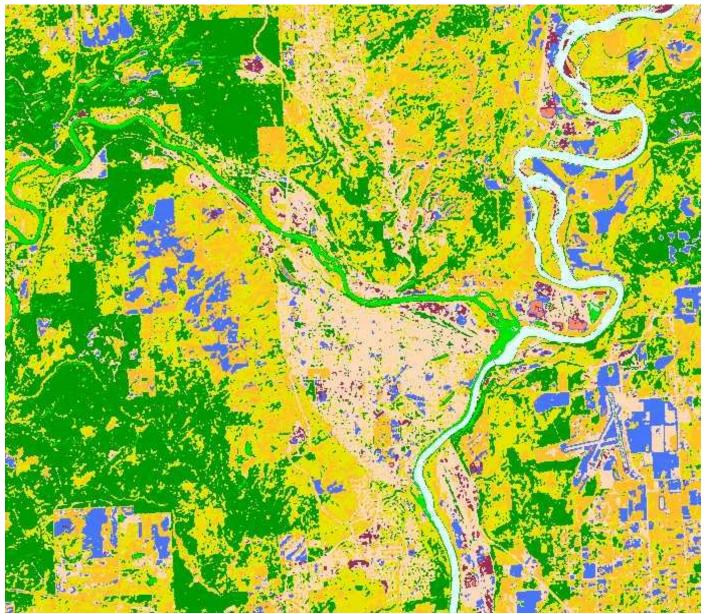
Mt. Kilimanjaro

Classification ALWAYS produces a <u>'salt and pepper</u>' effect with isolated pixels

Due to :

- fine local DN variations
 - '**per-pixel'** classifiers

smooth with Filters or Sieve tool



Modal Filters 1 1 1 1 2* 2 1 1 1

replace centre pixel in 3x3 window with mode value (= 1 here)

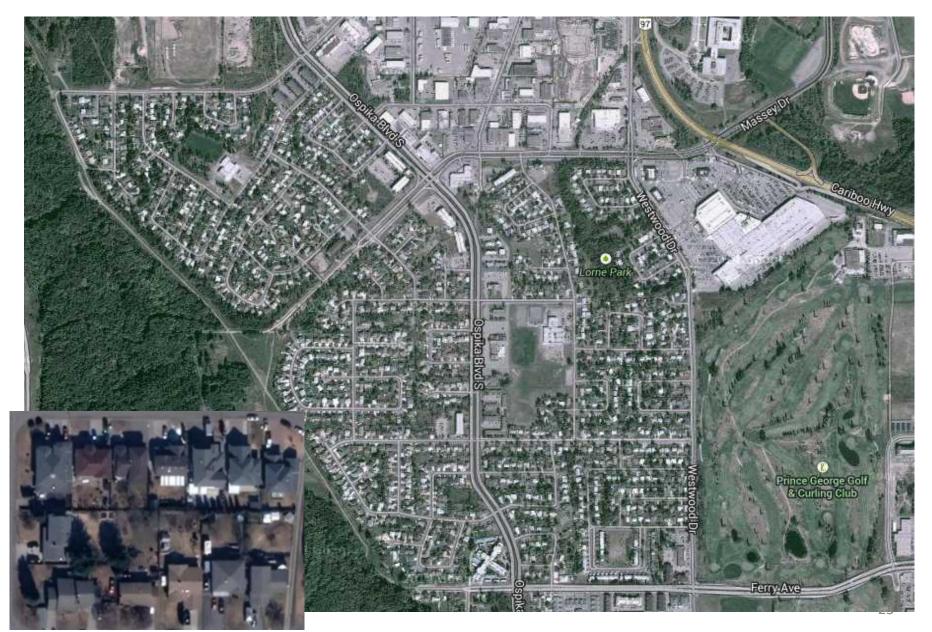
SIEVE

Merges isolated pixels into adjacent class

Minimum cluster = ? GIS polygon: 1 ha ~ 11.1 pixels Or use 2 ha or 5 ha ? **Challenges in classification – why it doesn't always beat digitising** There are many spatial variations in reflectance (a range of DNs for a feature) e.g. stand purity, understory, age/maturity, density, disease, sun angle, topography

Classes/clusters: water, bare rock, glaciers, deciduous, coniferous, shadow?, cutblocks, planted..

URBAN / HUMAN - mosaic of smaller features inside a 30 metre pixel - amount of grass, types of material, roofing colour, weathering, sun angle (building shape)



Overall summary on classification

It is always complex - the classes and contrasts There are many causes of spatial variations in reflectance Most (natural) features are continuous, not discrete

Using only DNs (per-pixel classifiers): Any land cover types have a range of values Conversely, different cover types can appear similar

Further complications for all images:

- a. moisture (recent events) especially in SWIR/thermal
- b. edge (mixed) pixels
- c. sun angle (illumination) usually mid-morning

Textbook classification goal: ~ 85% accuracy But even manual digitizing may not do any better