PLATFORMS & SENSORS

Platform:

the vehicle carrying the remote sensing device

- e.g. ground, airborne, spaceborne

Sensor:

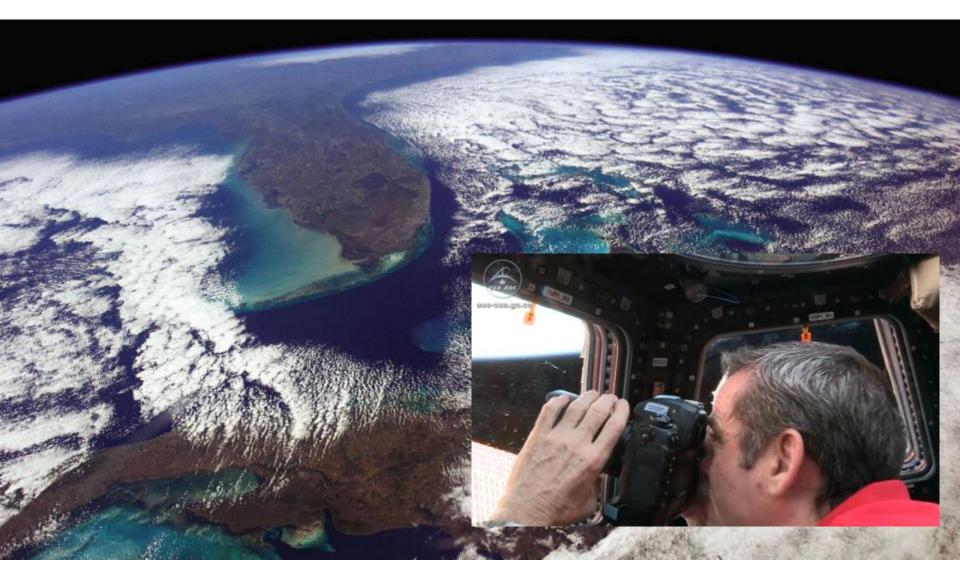
the remote sensing device recording wavelengths of energy e.g. camera, scanner

Image data might be referred to using platform or sensor

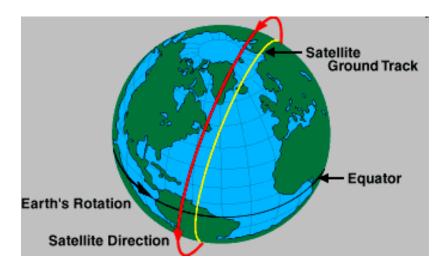
Another copy of my (old) lecture notes: ? http://web.pdx.edu/~nauna/resources/15-sensors.pdf

EARLY PLATFORMS & SENSORS

Birds, Kites, Balloons, Planes, with cameras

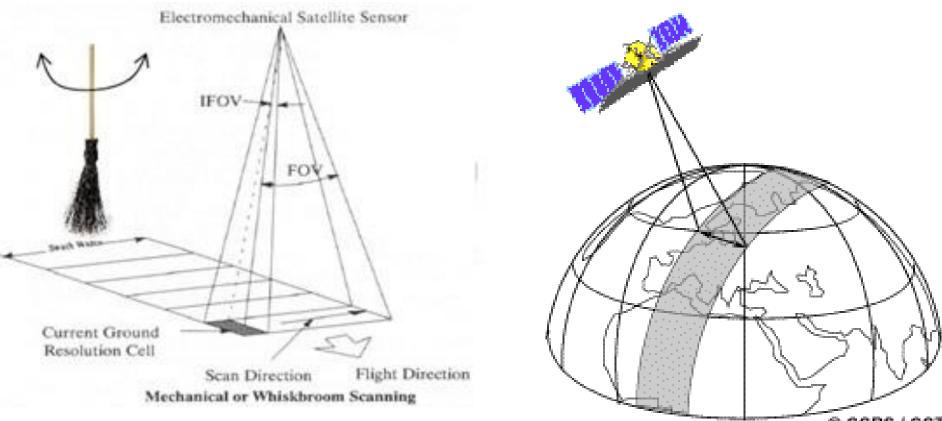

Sucseeded today by Unmanned Aerial Vehicles (UAV) = Remotely Piloted Airborne Systems (RPAS)

Corona 1959-1972 (CIA) Cold War Reconnaissance / Spy



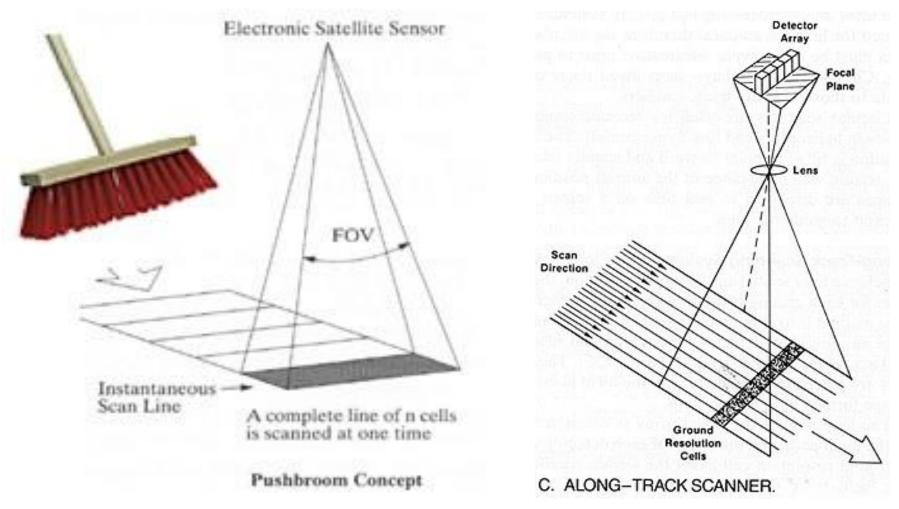
Platform = International Space Station Sensor = Chris Hadfield's DSLR Nikon ISS orbit is at 408 km altitude

1. Satellite orbits


http://resources.yesican-science.ca/orbits1/goes.html

"Geostationary" e.g. Weather satellites TV, Internet, GPS-WAAS ~ 36,000 km altitude all day "Sun-synchronous" EO Surface monitoring mapping / updating ~ 400-900 km altitude mid - morning

2. Scanner types


a. Whiskbroom (mirror/ cross-track): ... now a bit historic a small number of sensitive diodes for each band sweep perpendicular to the path or swath, centred directly under the platform, i.e. at nadir e.g. LANDSAT 1-7 MSS /TM/ETM

© CCRS / CCT

b. Pushbroom (along-track):

an array of diodes (one for each column of pixels) can be 'pointed' in a selected direction, **nadir or off-nadir**, on request, usually 0-30 degrees (max.), e.g. SPOT HRV, Landsat 8 OLI* - almost all now ... * Landsat 8 is not redirectionned; swath = 185km = ~ 6000 pixels

3. Sensor groups

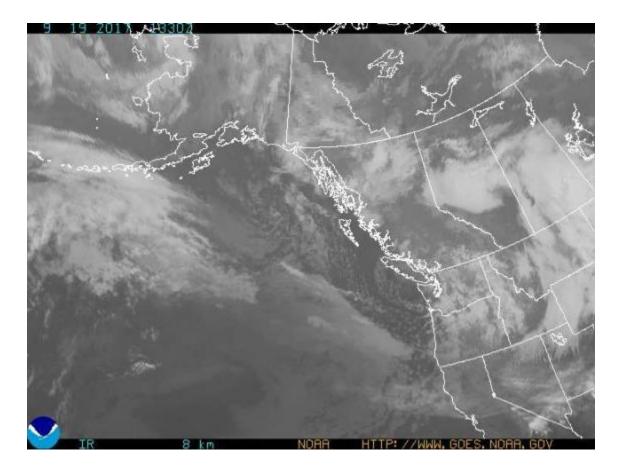
Multi-spectral sensors record bands in multiple wavelengths: ... but tend to focus on one of these groups

□ Visible, Near IR, SWIR - Reflective (optical)

□ Thermal - emissive (sometimes with optical)

□ Microwave - emissive or RADAR

And at different spatial resolutions (pixel size e.g...):

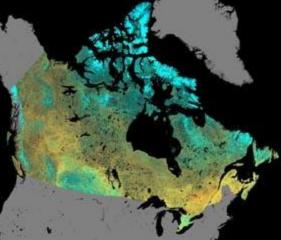

- \Box Low 1km +
- □ Medium 250-500m
- □ High 30m (5-30)
- □ Very high <1m

Many satellites now carry multiple sensors with varying resolutions

4a. Low Resolution

Weather: GOES (24 HOURS per day) - geostationary GOES 8: 75W longitude, GOES 9: 135W longitude Visible: 1km, Thermal: 4km, 10-bit data (DN = 0- 1023) GOES 17: 16 bands, VNIR (5)/ TIR (11)

http://www.goes.noaa.gov



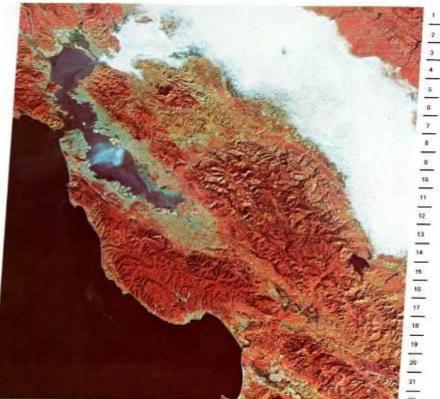
4b. Low Resolution

NOAA AVHRR (Advanced 'Very High' Resolution Radiometer) 1.1km Red / NIR / TIR - very high 'temporal resolution' = repeats 1978-> present (19 satellites) - global vegetation monitoring: data are freely downloadable. 18, 19 operational

2500 x 2500 pixels, <u>10</u> bit data

AVHRR/3 Channel Characteristics				
Channel Number	Resolution at Nadir	Wavelength (um)	Typical Use	
1	1.09 km	0.58 - 0.68	Daytime cloud and surface mapping	
2	1.09 km	0.725 - 1.00	Land-water boundaries	
3A	1.09 km	1.58 - 1.64	Snow and ice detection	
3B	1.09 km	3.55 - 3.93	Night cloud mapping, sea surface temperature	
4	1.09 km	10.30 - 11.30	Night cloud mapping, sea surface temperature	
5	1.09 km	11.50 - 12.50	Sea surface temperature	

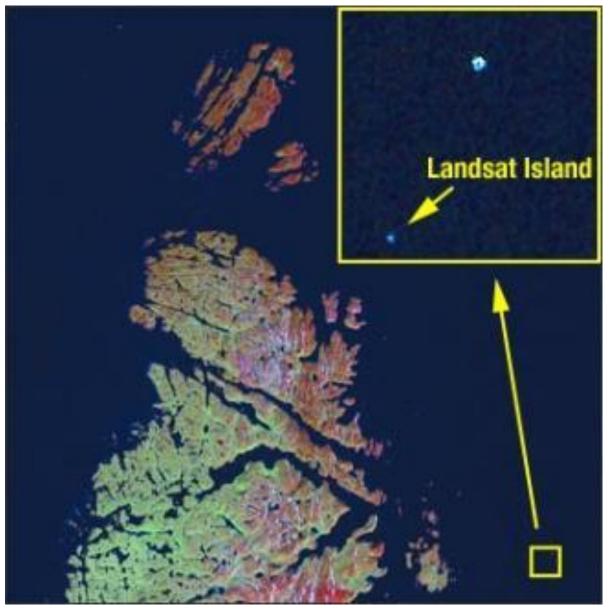
5. Medium RESOLUTION


LANDSAT (NASA) initially known as ERTS (Earth Resource Technology Satellite); Multi-Spectral Scanner (<u>MSS: 80m</u>)

- 1972 Landsat 1 until 1978 (ERTS 1) Manual interpretation e.g. fault lines
- 1975 Landsat 2 until 1982
- 1978 Landsat 3 until 1983

Band	Spectral band	Resolution
4	0,5 - 0,6 µm	79 m x 82 m
5	0,6 - 0,7 µm	79 m x 82 m
6	0,7 - 0,8 µm	79 m x 82 m
7	0,8 - 1,1 µm	79 m x 82 m

(No SWIR bands)

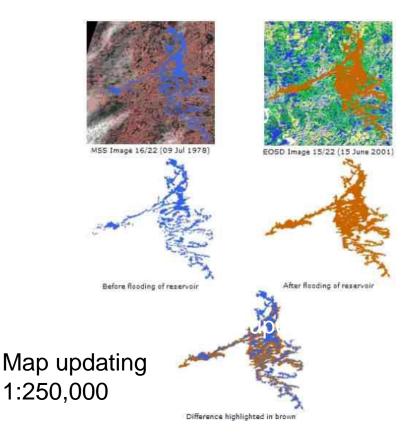

Bands 1,2,3 were on the 'Return Beam Vidicon' (RBV)

A | 8 | C | D | E | F | G | H | 1 | J | K | L | M | N | 0 | P | D | R | S | T | U | V

Landsat image data

Discovered in 1976, Labrador 25m x 45m (Landsat 1)

[Landsat Island is a small, uninhabited island located 20 kilometres off the northeast coast of Labrador


Verified by Dr. Frank Hall (Canadian Hydrographic Service). He was strapped into a harness and lowered from a helicopter down to the island. As he was lowered out of the helicopter, a polar bear took a swat at him.

The bear was on the highest point on the island and it was hard for him to see because it was white. 1970s Multispectral image processing: The Landsat Era -this changed everything..

1972 Launch of Landsat (ERTS) 1 satellite and the 80m MultiSpectral Sensor (MSS)

Virginia Tower Norwood (1927-2023): "The Mother of Landsat" designed the MSS <u>https://www.technologyreview.com/2021/06/29/1025732</u>

6. High resolution Landsat 4/5 Thematic Mapper (TM) 1982/84: 'the next generation' – Landsat 5 TM failed November 2011

Band No.	Wavelength Interval (µm)	Spectral Response	Resolution (m)
1	0.45 - 0.52	Blue-Green	30
2	0.52 - 0.60	Green	30
3	0.63 - 0.69	Red	30
4	0.76 - 0.90	Near IR	30
5	1.55 - 1.75	Mid-IR	30
6	10.40 - 12.50	Thermal IR	120
7	2.08 - 2.35	Mid-IR	30

- Improved resolution (80 -> 30 m)
- Addition of mid-IR (and thermal band)
- Included MSS (till 1999) for continuity

France launches SPOT 1986 (Satellite Pour l'Observation de la Terre)

Summary table: Landsat TM versus SPOT HRV (1980s)

	LANDSAT TM	SPOT HRV
Launch	1982 / 1984	1986
Altitude	705 km	832 km
Attitude (polar)	8.2 degrees	8.7 degrees
Equatorial time	9.45 am	10.30 am
Swath width	185km	60km
Repeat coverage	16 days	26 days
Sensor	Thematic Mapper (TM)	High Resolution Visible (HRV)
Number of detectors	100	6000/3000
Advantages	#bands, swath size	higher resolution, # 'looks'
Bands	7	3 + 1 (no SWIR bands)
Scanner type	Mirror (Whisk broom)	Pushbroom
Pixel size	30m	10 / 20m

High resolution SPOT (France) High Resolution Visible (HRV) bands 1986 ->

SPOT 1-3: 1986, 1990, 1993

Mode	Band	Spectral band	Resolution
XS-multispectral	XS1	0,50 - 0,59 µm	20m x 20m
	XS2	0,61 - 0,68 µm	20m x 20m
	XS3	0,79 - 0,89 µm	20m x 20m
P-panchromatique	PAN	0,51 - 0,73 µm	10m x 10m

SPOT 4- 5: 1998, 2002

Mode	Band	Spectral band	Resolution
Multispectral	B1	0,50 - 0,59 µm	20m x 20m
	B2	0,61 - 0,68 µm	20m x 20m
	B3	0,79 - 0,89 µm	20m x 20m
SWIR	MIR	1,58 - 1,75 µm	20m x 20m
M - monospectral	PAN	0,61 - 0,68 µm	10m x 10m

SPOT (ESA / France)

http://www.spot.com 1 - 3: 1986 - 1993 (-> 2003) programmable, pushbroom - 60km wide 20m Red/Green/near-IR 10m PAN

4 SWIR included 1998 -> 20m (PAN 10m)

SPOT 5 (2002): Similar to 4, but also high-res PAN option (2.5 / 5m)

World Trade Centre, Sep 11, 2001

SPOT receiving station built at U. Lethbridge (2005)

SPOT 4/5 imagery for Canada (2005-2010) 10/20m images downloadable at geobase.ca

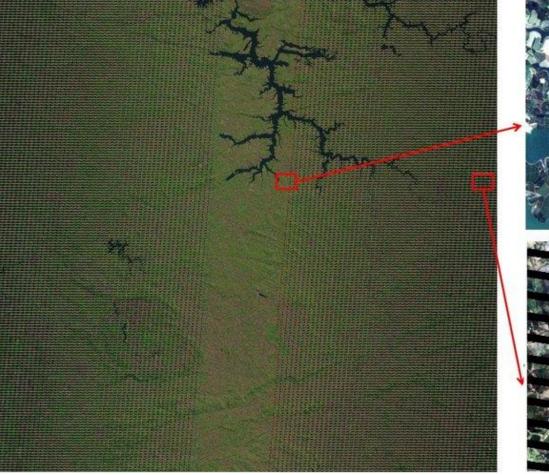
Otherwise - Not Free !

[SPOT 6 and 7: 2012 / 2014 very high res. 1.5m] - we have Glacier NP

Landsat 4-7 summary

1982 Landsat 4 Thematic Mapper (TM) until 1987

1984 Landsat 5 TM ... operational till Nov 2011


1993 Landsat 6 Enhanced TM: (ETM+) failed after launch 1999 Landsat 7 ETM+ ... sensor malfunctionned April 2003

Landsat 7 imagery (ETM+ ~2000) Google Earth mosaic in 2005

[Overlap for Landsat scenes is 14% at equator, 45% at 50 degrees]

Enhanced Thematic Mapper Plus (ETM+) (Landsat 7): New band versus Landsat 5 TM: PAN 0.52-0.9 (Green->IR) band 15m

Sensor malfunctionned, April 2003 'Scan Line Calibrator' failed Missing data lines thin towards the centre leaving a usable 20km strip; data are still transmitting

Landsat image data

Not the only land image data but ..

>Longest continuous record: 1972 (1984)

The most accessible/downloadable
free after 2008

Landsat 1

>Suitable resolution (30m) for northern environments

> Suitable scale for landscape analysis

> These factors enabled it for the Google Earth mosaic

using Landsat 7 ETM+ ~2000 (pre-calibration failure)

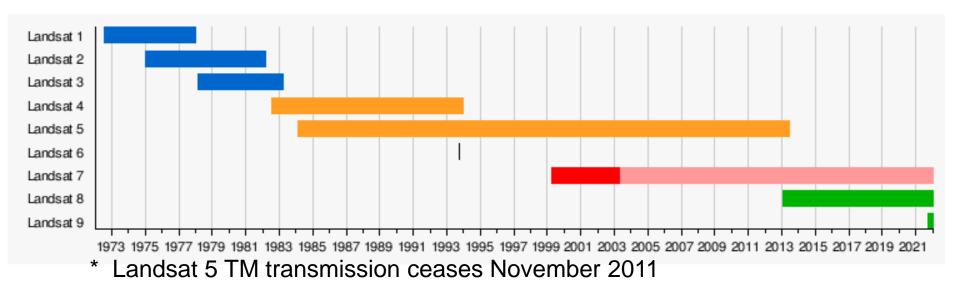
Landsat 8 successfully launched February 2013 Operational Land Imager (OLI): 16-bit data (versus 8-bit for previous sensors)

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)^[20]

Bands	Wavelength (micrometers)	Resolution (meters)
Band 1 - Ultra Blue (coastal/aerosol)	0.435 - 0.451	30
Band 2 - Blue	0.452 - 0.512	30
Band 3 - Green	0.533 - 0.590	30
Band 4 – Red	0.636 - 0.673	30
Band 5 – NIR	0.851 – 0.879	30
Band 6 – SWIR 1	1.566 – 1.651	30
Band 7 – SWIR 2	2.107 – 2.294	30
Band 8 – Panchromatic	0.503 - 0.676	15
Band 9 – Cirrus	1.363 – 1.384	30
Band 10 – Thermal 1	10.60 – 11.19	100* (30)
Band 11 – Thermal 2	11.50 - 12.51	100* (30)

* TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered

Landsat 9 launched September 2021: OLI-2 / TIRS-2


Bands near identical to Landsat 8; 8 days apart from Landsat 8
Landsat 9 will replace Landsat 7 (launched in 1999), taking its place in orbit.
OLI: 12 bit (4096) OLI-2: 14-bit (16,384) – both stored in 16-bit (65,536 DNs)
14 v 12 bit data = more discrimination in shadows, details in snow accumulation areas?

Landsat continuation and the end of Landsat 5

the longest-operating Earth observation satellite 1984-2011 / 2013 The basis for Google Earth TimeLapse <u>https://earthengine.google.com/timelapse/</u>

- Landsat 5 TM transmission ceased November 2011 fully decommissioned May 2012

The secondary instrument, the Multispectral Scanner (MSS) had been turned off in 1995. Mission operations engineers realized that the communication links used by MSS were still good, and the mission could continue if the MSS still worked. Seventeen years after turning the instrument off, engineers powered it back on, and amazingly, it worked. This allowed Landsat 5 to acquire one more year of data until Landsat 8 was ready to take its place in early 2013. i.e. Jan 2012-13

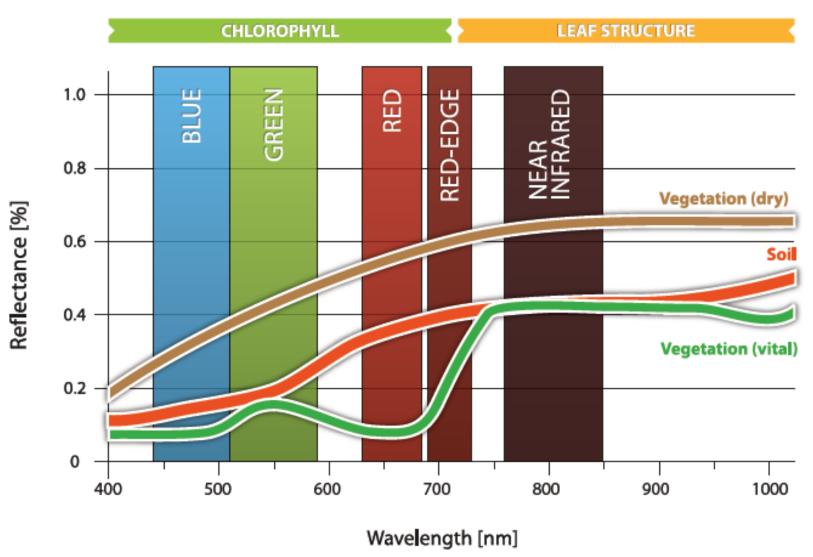
Powers o 2^0	f 2 Digital Value 1	Radiometric resolution
21	2	Bitmap layer = 0,1
2^{2}	4	
2 ³	8	
24	16	
2 ⁵	32	
2 ⁶	64	
27	128	Landsat 1-3 : 0-63
2 ⁸ 2 ⁹	256	Landsat 4-7: 0-255
2^{2} 2^{10}	512 1024	
2 ¹²	4096	Landsat 8 data capture
2 ¹⁴	16,384	Landsat 9 date capture
2 ¹⁶	65,536	L 8/9 data stored 0-65,535

European Space Agency (ESA)

Copernicus Program Sentinel 2A/B 2015 / 17

free download

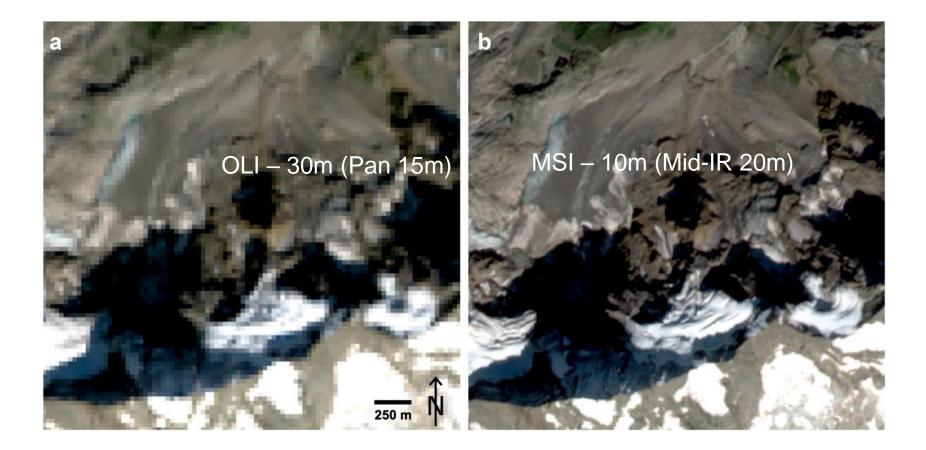
Multi-Spectral Instrument (MSI) 10 / 20m



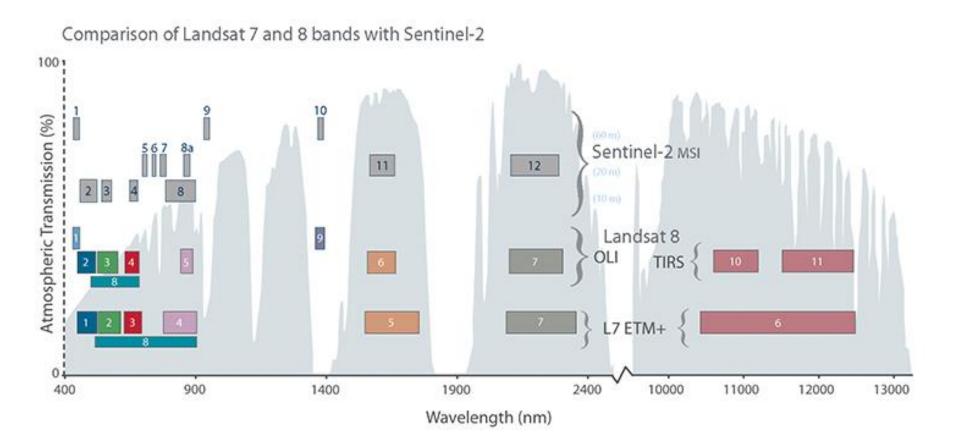
ESA Copernicus Program – Sentinel 2A/B, 2015/2017 - free download; multi-spectral instrument (MSI) – 12 bit

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)
Band 1 – Coastal aerosol	0.443	60
Band 2 – Blue	0.490	10
Band 3 – Green	0.560	10
Band 4 – Red	0.665	10
Band 5 – Vegetation Red Edge	0.705	20
Band 6 – Vegetation Red Edge	0.740	20
Band 7 – Vegetation Red Edge	0.783	20
Band 8 – NIR	0.842	10
Band 8A – Narrow NIR	0.865	20
Band 9 – Water vapour	0.945	60
Band 10 – SWIR – Cirrus	1.375	60
Band 11 – SWIR	1.610	20
Band 12 – SWIR	2.190	20

https://en.wikipedia.org/wiki/Sentinel-2#Instruments


Introducing the Red Edge

Typical spectral reflectance curves of selected surfaces in


Landsat 8,9 (2013, 2021) vs Sentinel 2A,B (2015, 2017)

Orbit 8 days apart from Landsat 8 and 9 (Sentinel 2A and 2B are 5 days apart)

Paul et al. 2016: Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8

Sentinel 2 vs Landsat 8(9) OLI vs Landsat 7 ETM+ bands:

S2 has finest **'spectral**' resolution = narrowest bands L8 has finer **'spectral**' resolution than L7 ETM+ L9 has highest **'radiometric'** resolution (14 bit)

Optical Sensors Summary so far:

National Aeronautics and Space Administration (NASA) Landsat MSS 1-3 1972-82 Free (since 2008)

□ Landsat TM 4-9 1982-> Free (since 2008)

Centre national d'études spatiales **(CNES)** SPOT (France) 1-7 1986- > NOT Free

European Space Agency (ESA) Sentinel-2 2013->

Free

Many others – including very high resolution (see later lectures) e.g. China, India, UK, Japan, Brazil

Earth Observing satellite systems lists

https://en.wikipedia.org/wiki/List_of_Earth_observation_satellites

https://www.eoportal.org/satellite-missions

https://www.itc.nl/Pub/sensordb/AllSensors.aspx

https://gisgeography.com/satellite-list/

About that blue bit next to Swampy Lake (NW corner) for supervised classification lab ...

