GEOG 413/613

LECTURE 15

Course Review

1

GNSS

- GNSS
 - It is a satellite-based system that provides positioning, navigation, and timing services across the globe
- Multiple GNSS
 - GPS, GLONASS, Galileo, BeiDou
- Segments of a GNSS
 - Space; Control, User

GNSS Data Collection

- Stationary Static data collection
- Mobile Kinematic data collection
- Differential GPS
 - Two GPS receivers
 - one at a base that is precisely known
 - the other receiver can be used as a rover
 - The base recivers uses the psudo ranges to calculate errors

3

GNSS Data Collection

- Continuously Operating Reference Stations (CORS)
 - Function?
 - CORS in Canada? In BC?
- Realtime kinematic: corrections are sent to the rover in Realtime
- Post-processed kinematic: corrections for accurate positioning are applied afterwards

4

4

GPS Signals

- The L1 and L2 signals are generated on board the satellites
- L1 and L2 are modulated by codes to provide clock and orbital parameters
- Biphase modulation?

5

GPS Accuracy

- Determined by
 - accuracy of the atomic clocks
 - ephemeris error (how certain we are of the exact position of the satellites)
 - atmospheric errors
 - relativistic timing adjustments
 - receiver error (how the receiver software computes the location)
 - Multipath interference

6

6

Dilution of Precision

- The effect of the geometry of satellites is referred to as the Dilution of Precision, or DOP
- DOP can be expressed as a measure of different componets
 - horizontal (HDOP)
 - vertical (VDOP)
 - 3D position (PDOP)
 - time (TDOP)
 - geometric (GDOP)
- PDOP indicates the quality of the solution with respect to satellite geometry

7

7

Wide Area Augmentation System (WAAS)

- WAAS is a satellite-based augmentation system
 - Augments or enhances the integrity and accuracy of standard GPS capability
 - developed to provide accurate navigation for commercial aircraft;
 also works for hand-held receivers
- Uses geo-stationary satellites to receive data measured from many ground stations, and it sends information to GPS users for position correction

Non-spatial Statistics

Measurement Concepts

- Precision
- Accuracy
- Validity
- Reliability

Classification Methods

- Equal intervals
- Quantile breaks
- Natural breaks

Presentation

- Histograms
- Frequency tables
- Scatter Plots
- Line Graphs

9

Spatial Statistics

Central Tendency

- Mean Center
- Weighted Mean Center
- Median Center
- Manhattan Center

Dispersion

- Standard distance
- Relative Distance

10

Non-spatial statistics

Central Tendency

- Mode
- Median
- Mean

Dispersion

- · Deviation
- Average Deviation
- Range
- Standard Deviation
- Variance
- Covariance

Relative Position

- Kurstosis
- Skewness

1

11

Analysis of Spatial Data

- Spatial autocorrelation
- The modifiable area unit problem
- Ecological fallacy
- Scale
- Non-uniformity of space
- Edge/boundary effects

Geospatial Databases

- A database is an integrated set of data on a particular subject
 - Data are related and represent a specific aspect of the world
 - Data are for a specific purpose
- A geospatial database
 - Has entities (house, river, lake, road...)
 - Has attribute of these entities (location, size, type, name...)
 - Has spatial relationships (distances between entities, adjacency...)

13

13

Geospatial Databases

- Advantages
 - Data stored at a single location reduces redundancy
 - · Consider cadastral data needed by different levels of govt or departments
 - Maintenance costs decrease
 - Multiple applications and users can use the same data
 - · Data are not dependent on software
 - · Data sharing is easier
 - Multiple interfaces and operations
 - Data security and standards
- Disadvantages
 - The cost of acquiring DBMS software can be quite high
 - · A DBMS can add unnecessary complexities for data management in small projects
 - Single-user GIS will often be better for files rather DBs

DBMS

- Functions
 - · A data model
 - Data input capability
 - Indexing
 - A query language
 - Security
 - Backup and recovery
 - Database administration tools
 - Applications
 - Application programming interfaces (APIs) for further customization

15

15

DBMS Types and Extensions

- Types:
 - relational (RDBMS)
 - object (ODBMS)
 - object-relational (ORDBMS)
- Extensions
 - ORDBMS have spatial database extension
 - Indexing; Storage management; Transaction services; Query language; DB replication services; Query parser; Query optimizer

Storing Geospatial Data in DBMS Tables

- Database tables are designed along the following principles
 - There is only one value in each cell at the intersection of a row and column.
 - All values in a column are about the same subject.
 - Each row is unique
 - There is no significance to the sequence of columns
 - There is no significance to the sequence of rows

17

17

SQL

- SQL (Structured Query Language) programming language designed to retrieve sets (row and column combinations) of data from relational databases
- It is the standard database query language it has geographic capabilities
- Some DBMS can have proprietary SQL extensions that are usually only used on their system

Database Design

- Database Design
 - Conceptual model
 - Logical model
 - Physical model
- Database Schema and Instances
 - the description of the database is called database schema
 - the data items that reside in a database at a specific point in time form the database instance

19

19

Entity-Relationship Model

• ER-model: diagrammatic representation of the *miniworld* into a set of entities and their relationships.

20

Entity and Relationship Types

21

Normalization

- The process minimizing redundancy in a database
 - Characterizes the level of redundancy in a relational schema
 - Provides mechanisms for transforming schemas in order to remove redundancy
 - Data normalization follows certain rules which are categorized as "normal forms". There are 6 normal forms but we'll briefly look at only 3
- In principle, any information that can be applied to more than one record should be moved to its own table.
 - Each successive normal form applied must meet the rules of the previous form

Indexing Geographic Information

- A database index is a special representation of information about objects that improves searching
 - B-tree indexing
 - Grid indexing
 - Quadtree indexing
 - R tree

23

23

Editing and Data Maintenance

- Transaction
- Versioning

GeoWeb

- Web GIS
 - web service technology
 - Key elements:
 - A server and a client
 - The server performs the requested GIS operations and sends responses to the client via HTTP.
 - The format of the response sent to the client can be in many formats, such as HTML, binary image, XML, JSON, etc

25

25

Web GIS Advantages

- A wide reach
- A wide user base
- Cross-platform capability
- Low cost (relative to potential usage)
- Easy to use
- Unified updates
- Numerous applications

Essential elements of a web GIS application

- A web application
 - Software to visualize and interact with geographic information
- Digital basemaps
 - Geographic context for each application e.g. Transportation, Topographic, Terrain, Imagery
- Operational layers
 - Additional layers for the operation e.g. sensor feeds, editing layers
- Tasks and tools in the web GIS application
 - · Client tasks, server tasks
- One or more geospatial databases

27

27

4 Broad Themes of Big Data

- Information
 - Data are created, shared and utilised extensively in recent times
 - The proliferation of personal mobile devices
 - connected to the Internet
 - · equipped with digital sensors
 - Expanding variety in form
- Pervasive (Wide impact)
 - Many fields
 - Examples: Elections; Google searches linked to epidemiology and economics

4 Broad Themes of Big Data

- Technology
 - Needs intensive computational and storage specs
 - Hadoop
 - Open source parallel computing.
 - · Google, Yahoo, FaceBook
- Methods of Analysis
 - cluster analysis; genetic algorithms; natural language processing; machine learning; neural networks; predictive modelling; regression models; social network analysis; sentiment analysis; signal processing and data visualisation

29

29

Landscape Metrics

- Pattern and Process
 - Processes in natural systems
 - Spatial pattern (form) can influence process
 - Spatial patterns
 - Formed from processes
 - Patterns tell us about process
 - · Quantifying the complexity of nature
 - measure ecological functioning (e.g. biodiversity, connectivity)
 - measure land use processes (land consumption, fragmentation, urban sprawl)

Landscape Metrics

Farina, A. 2000. Landscape ecology in action. Kluwer Academic Publishers, Netherlands

Patch-level metrics are defined for individual patches, and characterize the spatial character and context of patches.

Class-level metrics are integrated over all the patches of a given type (class).

Landscape-level metrics are integrated over all patch types or classes over the full extent of the data (i.e., the entire landscape).

31

31

Landscape Metrics

Composition

- Proportional Abundance
- · Richness
- · Diversity
- Evenness

Configuration

- Patch size distribution and density:
- Patch shape complexity:
- Core Area
- · Isolation/Proximity:
- Contrast
- Dispersion
- Contagion and Interspersion
- Subdivision
- · Connectivity

Sampling Methods

- Provides knowledge about a whole population
 - i.e. make inference about a population from the sample data
- Larger sample sizes are more accurate representations of the whole
 - Large samples are costly: time, labour
 - Can be wasteful since we can statistically infer from appropriate samples
- A sampling strategy with the minimum bias is the most statistically valid

33

ource: Longley, Paul A.; Goodchild, Michael F.; Maguire, David J.; Rhind, David W.. Geographic Information Science and Systems, 4th Edition. Wiley.

Random Sampling

- Random sampling: each member of the population has an equal chance of being selected
 - Advantages:
 - Can be used with large sample populations
 - · Avoids bias
 - Disadvantages:
 - Can disproportionately represent some parts of the population at the expense of others

35

35

Systematic Sampling

- Systematic Sampling: Samples are chosen at regular intervals
 - Sample locations are evenly distributed for example every two metres along a transect line
 - · systematic sampling implies a regularly spaced grid
 - Advantages:
 - It is more straight-forward than random sampling
 - · Provides a good coverage of the study area
 - Disadvantages:
 - It is more biased: not all points have an equal chance of being selected
 - It may lead to over or under representation if there is periodicity in the data (e.g. sampling at the same interval as the location of erosion barriers along a beach. Or a city road grid)

Stratified sampling

- Stratified sampling: used when the parent population is made up of sub-groups that of interest.
 - Divide the sampling design into strata(classes), and then select a sample from each stratum
 - The strata are defined so that individuals inside each class are similar based on the characteristic believed to influence the phenomena

37

37

Stratified sampling

- Advantages:
 - If the proportions of the subgroups are known, the results are representative of the whole population
 - Correlations and comparisons can be made between subgroups
- Disadvantages:
 - The proportions of the subgroups must be known

Air Photos for Stratified Sampling

- Looking for distinct, uniform areas
 - Crown size (age), harvest history
 - Hardwoods (gray) and softwoods (green)

39

Stratified Sampling

- Generate sample points randomly
 - X points per area, e.g. 1 point every 3 hectares
 - Each point tied to polygon = unique stand

Stratified Sampling: Population

41

Source: J. Chapman, Jr. McGrew. An Introduction to Statistical Problem Solving in Geography

Levels or Scales of Measurement

- Nominal
 - Categorical data e.g. land use type, religious affiliation
- Ordinal
 - Ranked data, e.g. main, secondary, minor roads
- Interval:
 - Interval between any two units can be measured on scale. Zero value is assigned arbitrarily e.g. Celsius and Fahrenheit scales (80°F is not twice as hot as 40°F)
- Ratio:
 - interval data with an absolute zero value

4.

45

Multivariate Exploratory Data Analysis

- the initial investigations on data
 - discover patterns
 - Reduce dimensions
 - identify anomalies/outliers
 - test hypothesis (e.g. observed vs expected)
 - check assumptions
 - Descriptive statistics
 - Visualization

Dimensionality Reduction

- Data dimension is the number of variables for a measured theme/dataset
- Data with a high dimensionality is difficult to visualize
- Reducing the dimensionality of the data helps understand the intrinsic aspects of the dataset
 - Find structure within features
 - · Aid in visualization
- The methods maximize information while minimizing differences between the original data and the new lower dimensional representation
- · Principal Component Analysis is one such method

47

47

Principal Component Analysis

- Widely used method for dimensionality reduction
- The transformation between original data and the new lower dimensional representation is a linear projection
 - find a linear combination of the original features principal components.
 - The principal components will maintain as much as is possible the same variance as the original data
 - o The principal components are uncorrelated (orthogonal)

Principal Component Analysis

- PCA major steps
 - Standardize the variables
 - · Centre (deviation from the mean)
 - Scale (divide the deviation by the standard deviation)
 - · Calculate the covariance matrix
 - Covariance how 2 variables vary with each other
 - If you have more than 2 variables, then you gave more than one covariance (given variables x,y,z -> cov(x,y), cov(x,z), cov(y,z))
 - Calculate the eigenvectors and eigenvalues of the covariance matrix

$$Av = \lambda v$$

$$A - matrix$$

$$v - eigenvector for \lambda$$

$$\lambda - eigenvalue for v$$

10

49

Cluster Analysis

- <u>To reduce data complexity</u> by sorting the data into subsets (clusters) that share some common trait
- Achieve the reduction of observations by minimizing the within-group variation and maximizing the between group variation (i.e. the degree of association between two objects is maximal if they belong to the same group and minimal otherwise)

Clustering Analysis

- Searching for groups in the data in such a away that objects belonging to the same cluster resemble each other, whereas objects in different clusters are dissimilar.
- Two methods are partitioning and hierarchical clustering

51

51

Cluster Analysis

• Hierarchical Methods

• Can be agglomerative or divisive

5

Cluster Analysis

Hierarchical Methods

- Identifies homogeneous groups of variables by using an algorithm that:
 - either starts with each observation in a separate cluster and combines clusters until only one is left (agglomerative),
 - or starts with the whole dataset and proceeds to divide it into successively smaller clusters (divisive).

53

53

Cluster Analysis: K-means

• Partitioning Methods

- Based on specifying an initial number of groups, and iteratively reallocating observations between groups until some equilibrium is attained
- The most popular method of partitioning is the k-means method
- commonly used as an unsupervised machine learning algorithm for partitioning a given data set into a set of k groups
 - *k* represents the number of non-overlapping groups (clusters) specified by the user

K-Means Analysis

- K-Means Clustering
 - Group membership is determined be calculating the centroid for each group, then assigning each observation to the group with the nearest centroid
 - The primary objective in k-means clustering is to define clusters so that the total within-cluster variation is minimized and the between group variation is maximized

55

55

Point Pattern Analysis

- Examining the spatial arrangement of point locations on the landscape
- Two methods are *nearest neighbour analysis* and *quadrat analysis*.
 - Standardized Nearest Neighbour Index
 - Variance-Mean Ratio

Measures of Spatial Autocorrelation

- Moran's I Statistic
 - A global spatial autocorrelation measure that calculates the relationship between locations of observations (w_{ij}) the similarity between the attributes (c_{ij}) at those locations
- Local Indicators of Spatial Association
 - G-Statistic (Getis-Ord's) for Measuring High/Low Clustering

57

57

Bivariate Regression

- Bivariate Analysis
 - Two variables are explored in detail
 - Assumption is that one variable influences/affects the other
 - Independent Variable (Explanatory Variable)
 - The variable creating the influence/effect
 - Dependent Variable
 - The variable receiving the influence or effect

Bivariate Regression Line

- · The least-squares regression line is unique
 - Minimizes the sum of the squared vertical distances between each data point and the line
- The regression is given by the straight-line equation

$$Y = a + bX$$

- a is the intercept on the Y-Axis
 - · Represents the value of Y when X is zero
- b represents the slope of the line
 - · Also, the correlation coefficient

59

Complex Systems

- Complex systems
 - A system composed of many related but various elements with intricate relationships and interconnections
 - Modeling approaches take on combination of both the Parts and the Relationships
 - Consideration of feedback loops
 - Positive feed-back (Reinforcing)
 - Negative feed-back (Regulative)
 - Feed-back loops can make systems counter-intuitive or unclear