GEOG 413/613

LECTURE 10

1

Multivariate Exploratory Data Analysis

- Graphical Methods
- PCA
- K-Means Cluster Analysis

Cluster Analysis

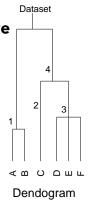
- To reduce data complexity by sorting the data into subsets (clusters) that share some common trait
- Achieve the reduction of observations by minimizing the within-group variation and maximizing the between group variation (i.e. the degree of association between two objects is maximal if they belong to the same group and minimal otherwise)

Clustering Analysis

- Searching for groups in the data in such a away that objects belonging to the same cluster resemble each other, whereas objects in different clusters are dissimilar.
- Two methods are partitioning and hierarchical clustering

Cluster Analysis

- Hierarchical Methods
 - Can be agglomerative or divisive



.

5

Cluster Analysis

- Hierarchical Methods
 - Identifies homogeneous groups of variables by using an algorithm that:
 - either starts with each observation in a separate cluster and combines clusters until only one is left (agglomerative),
 - or starts with the whole dataset and proceeds to divide it into successively smaller clusters (divisive).

6

Cluster Analysis: K-means

Partitioning Methods

- Based on specifying an initial number of groups, and iteratively reallocating observations between groups until some equilibrium is attained
- The most popular method of partitioning is the k-means method
- commonly used as an unsupervised machine learning algorithm for partitioning a given data set into a set of *k* groups
 - *k* represents the number of non-overlapping groups (clusters) specified by the user

7

7

K-Means Analysis

K-Means Clustering

- Group membership is determined be calculating the centroid for each group, then assigning each observation to the group with the nearest centroid
- The primary objective in k-means clustering is to define clusters so that the total within-cluster variation is minimized and the between group variation is maximized

K-Means

$$vc_k = \sum_{x_i \in c_k} (x_i - \mu_k)^2$$

Where:

- vc_k is the sum of the within cluster variation
- x_i is the data point belonging to the cluster c_k
- μ_k the mean value of the points assigned to cluster c_k

9

K-Means Algorithm

- 1. Specify k the number of clusters/groups to be created
- 2. Select randomly k objects from the data set as the initial cluster centers or means
- 3.Assigns each observation to their closest centroid, based on the Euclidean distance between the object and the centroid
- 4. For each of the *k* clusters update the cluster centroid by calculating the new mean values of all the data points in the cluster..
- 5. Iterate through 3 and 4 to minimize the total within sum of squaures

K-Means

- For a multivariate dataset
 - divided into K distinct clusters
 - points within a cluster are as close as possible in the multidimensional space
 - Points within a given cluster are as far away as possible from points in other clusters.
- The dataset is a set of objects (rows) with each with a set of *n* attributes

11

11

Point Pattern Analysis

Examining Spatial Data

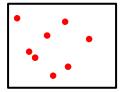
How are the data points spatially distributed?

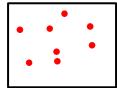
Clustered

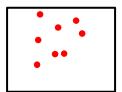
Random

Dispersed

▶ How do you know? Always test







13

13

Point Pattern Analysis

- A set of quantitative tools for examining the spatial arrangement of point locations on the landscape as represented by a conventional map.
- Two methods are **nearest neighbour analysis** and **quadrat analysis**.

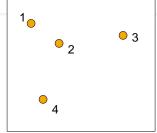
Nearest Neighbour Analysis

- Distance of each point to its nearest neighbour is measured
- The average nearest distance for all points is then calculated
- Can compare results with expected average for a random distribution

15

15

Nearest Neighbor Analysis



 $d_1 = I_{12}$ $d_2 = I_{21}$ $d_3 = I_{32}$ $d_4 = I_{42}$ $\sum_{i=1}^{n} d_i$

The Average Nearest Neighbor distance = Tobs

Nearest Neighbor Analysis

- The average nearest neighbour distance is an absolute value
- It is a function of the units in which the distance is measured
- Problem
 - How can we compare data from different regions or studies?
 - Solution: Standardized Nearest Neighbour Index

17

17

Nearest Neighbour Analysis

- The utility of the average nearest neighbour distance comes from comparing the index value for an observed pattern to the results produced from certain distinct point distributions
 - We can compare our results against values for random, clustered and dispersed distributions

Random Distribution

 For a random distribution, the average nearest neighbour distance is calculated as follows:

$$r_{rnd} = \frac{1}{2\sqrt{n/A}}$$
 Where:

A is area of study region n is number of points

19

Maximum Dispersion Distribution

• If the distribution is perfectly uniform, the average nearest neighbour distance is calculated as follows:

$$r_{dsp} = \frac{1.07453}{\sqrt{n/A}}$$

Question:

Consider the two distributions below, assume that the area is the same. Do they have different r_{dsp} values? If so, which one will have a higher r_{dsp}

Clustered Distribution

 When all points lie in the same position (i.e. maximum clustering) the average nearest neighbour distance is 0

$$r_{cst} = 0$$

21

21

Standardized Nearest Neighbor Index

 The Standardized Nearest Neighbor Index is computed as a ratio of robs to rmd, the expected average nearest neighbor distance for a random distribution

$$R = \frac{r_{obs}}{r_{rnd}}$$

Standardized Nearest Neighbour Index

• To calculate the standardized nearest neighbour index for maximum dispersion:

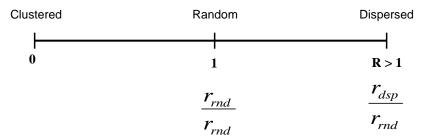
$$R = \frac{r_{dsp}}{r_{rnd}}$$

23

23

Standardized Nearest Neighbour Index

 An actual point pattern can be measured for relative spacing along a continuous scale:



Test of Significance

• It is important to test whether a significant difference exists between the observed and random nearest neighbor values.

$$Z_r = \frac{r_{obs} - r_{rnd}}{\sigma_{obs}}$$

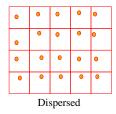
$$\sigma_{obs} = \frac{0.26136}{\sqrt{n(n/A)}}$$

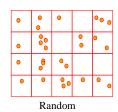
25

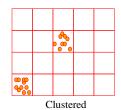
25

Quadrat Analysis

- Examines the frequency of points occurring in various parts of the study area.
- The point pattern arrangement in the study area is described with the aid of the frequency of points in a cell







26

Quadrat Analysis

 In quadrat analysis, an index known as the variance-mean ratio (VMR) standardizes the degree of variability in cell frequencies relative to the mean of the cell frequency

$$VMR = rac{Var}{Mean}$$
 where $n = ext{number of points}$ $m = ext{number of cells}$ $Mean = mean cell frequency}$ $Var = ext{Variance of cell frequencies}$

27

27

Quadrat Analysis

• Variance of Cell Frequencies

$$Var = \frac{\sum f_i x_i^2 - \frac{\left(\sum f_i x_i\right)^2}{m}}{m-1}$$

where f_i = frequency of cells with i cases x_i = number of cases per cell

Quadrat Analysis

- Variance-Mean Ratio (VMR)
 - If each cell contains the same amount of points, then VMR = 0
 - If a point pattern is highly clustered with most cells containing no points, then VMR will be relatively large.
 - If the point pattern is perfectly random, then the mean cell frequency equals the variance of the cell frequency, and VMR = 1

29

29

Quadrat Analysis

- Test of Significance
 - Applied to determine if distribution of points is random.
 - The test statistic used is chi-square:

$$X^2 = VMR (m - 1)$$