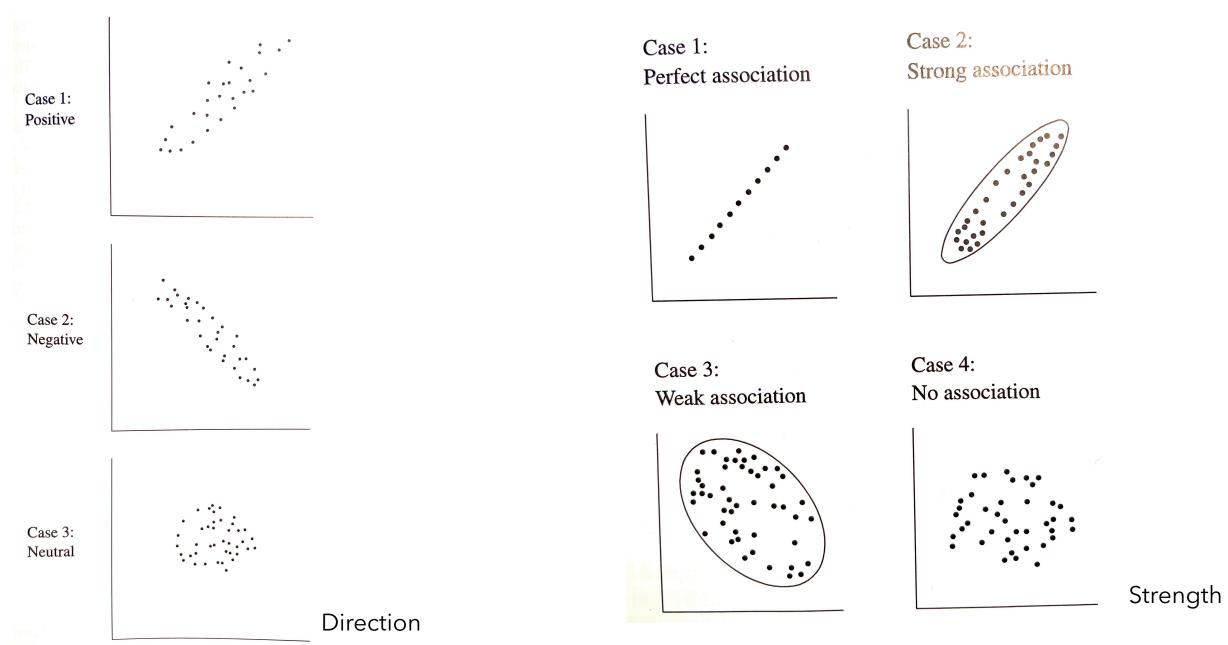
GEOG 204


LECTURE 11

Correlation

- Often one has to investigate if there is a relationship between two or more variables
 - Relationships total
 - Total household income and total monthly rent
 - Total population and the number of retail stores
 - Crime locations and the distance from police stations
- Correlation is a statistical method used to determine if a relationship between variables

Correlation

- Scatterplots are a common tool used to portray the relationship or association between variables
- Scatterplots provide visual information about
 - Strength of relationship
 - Direction of relationship

Scatterplots

Direction

- Positive relationship
 - Increasing values in one variable correspond to increasing values in another variable
 - Decreasing values in one variable correspond to decreasing values in another variable
- Negative (inverse) relationship
 - Increasing values in one variable correspond to decreasing values in another variable
 - Decreasing values in one variable correspond to increasing values in another variable
- Strength of relationship
 - Determined by the amount of spread in a scatterplot

Covariation

- Covariation:
 - The degree to which variables 'covary' (vary together or jointly)
 - If two variables covary in a similar manner
 - Data have a large covariation
 - Data have a strong correlation
 - If two variables show little consistency in how they covary
 - Then the correlation is weak

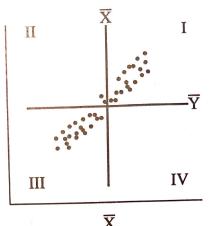
Covariance

$$CV_{XY} = \sum (X - \bar{X})(Y - \bar{Y})$$

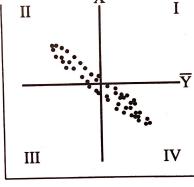
$$r = \frac{\left[\sum (X - \bar{X})(Y - \bar{Y})\right]/N}{S_y S_x}$$

where
$$CV_{xy}$$
 = covariation between X and Y

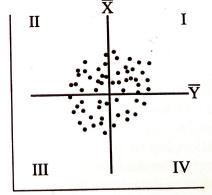
$$(X - \bar{X}) = deviation \ of \ X \ from \ its \ mean \ (\bar{X})$$


$$(Y - \overline{Y}) = deviation of Y from its mean (\overline{Y})$$

r = Correlation coefficient


 S_y , S_x = Standard deviation of Y and X, respectively

Covariation


Case 1: High positive covariation

Case 2: High negative covariation

Case 3: Low covariation

Correlation

- Any two variables can be correlated, and the strength and direction of relationship determined.
 - caution must be used when evaluating or interpreting correlations.
 - A relationship does not necessarily imply the existence of a causal relationship.