GEOG 204

LECTURE 10

3

Hypothesis Testing

- A hypothesis is an informed explanation, prediction, or supposition about something
 - Informed because there is evidence (but limited)
 - It has to be testable to so that one can conclude if its true or not
 - It has to be falsifiable (a possibility exists that it can be proven false)
- Bad hypothesis examples
 - Water is better than fire: not testable, criterion/variable is undefined
 - One can live to be 300 years old: not false falsifiable because no one gets to live that long

Hypothesis Testing

- A procedure that leads to a conclusive statement regarding a specified hypothesis
- The general goal is to make an *inference* about the magnitude of one or more population parameters based on sample data

5

Hypothesis Testing

• Two complimentary hypotheses

H ₀ = Null Hypothesis	There is no significant difference between two parameters
H_A = Alternate Hypothesis	There is a significant difference between two parameters

 H_0 : Sample Statistic = Population Parameter H_{Δ} : Sample Statistic \neq Population Parameter

Hypothesis Testing

- The goal is to calculate probability that the null hypothesis is true
- If this probability is acceptably low
 - (meaning that it is likely not true)
 - then the null hypothesis is rejected in favour of the alternate hypothesis.
 - The sample results can be said to be significantly different

Hypothesis Testing

- Steps in hypothesis testing
 - 1. State the null and alternate hypotheses
 - 2. Select appropriate statistical test
 - 3. Select level of significance
 - 4. Delineate regions of rejection and nonrejection of null hypothesis
 - 5. Calculate test statistic
 - 6. Make decision regarding null and alternate hypotheses

7

State the null and alternate hypotheses

• Consider the formulation of a hypotheses concerning the mean of the population

 $H_0: \mu = \mu_H$

 $\begin{array}{l} H_A: \ \mu \neq \mu_H \ (\text{nondirectional}) \\ H_A: \ \mu < \mu_H \ (\text{directional}) \\ H_A: \ \mu > \mu_H \ (\text{directional}) \end{array}$

Errors that can occur

- Type I Error
 - A decision is made **to reject** a null hypothesis as false when in fact it is true
- Type II Error
 - A decision is made to not reject the null hypothesis when it is actually false

9

Select the appropriate statistical test

$$Z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{s_{/\sqrt{n}}} \text{ (if } n \ge 30\text{)}$$
$$t = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{s_{/\sqrt{n-1}}} \text{ (if } n < 30\text{)}$$

where

Z, t = test statistic $\overline{X} = sample mean$ $\mu = population mean$ $\sigma_{\overline{X}} = standard error of the mean$ $\sigma = population standard deviation$ n = sample size

10

Select the level of significance

- Place a probability on the likelihood of a sampling error
 - Usually a low significance level ($\alpha = 0.05 \text{ or } \alpha = 0.01$)
 - As such the conclusion is stated in terms of the level of significance
- If a null hypothesis is rejected at a 0.05 level of significance
 - There is a 5% chance that a Type I error has occurred
 - 5% likelihood that a null hypothesis has been improperly rejected

11

Delineate regions of rejection and nonrejection of null hypothesis

- The level of significance is used to set regions of **rejection** and **nonrejection**
- Determine the critical Z-values that delimite the boundaries separating the rejection and nonrejection regions

12

Calculate the Test Statistic

- For our purposes here let's suppose the following contrived example
- A population has a mean = 65 and standard deviation = 25
 - Two samples are drawn from the population
 - Tsample has a size of 15 with a mean = 52.35 and standard deviation = 30.52
 - Zsample has a size of 75 with a mean = 57.87 and standard deviation = 24.93

$$\begin{split} Z &= (57.87 - 65)/(24.93/(75)^{0.5}) = -7.13/2.88 = -2.476 \\ t &= (52.35 - 65)/(30.52/(15 - 1)^{0.5}) = -12.65/8.156 = -1.55 \end{split}$$

Decide on the hypotheses

• From the last slide, the Z < -1.96. Therefore, we reject the null hypothesis (no significant difference between the sample mean and the population mean)

Example

- A population has a mean = 65
 - Two samples are drawn from the population
 - Zsample has a size of 250 with a mean = 60.871 and standard deviation = 24.96
 - State the hypotheses
 - Decide on the level of significance
 - Calculate the Z statistic

The P-Value or Probability Value

- The area within the rejection region(s) represents the p-value.
- This p-value, is calculated in in four steps
 - 1. The test statistic for Z is calculated
 - 2. The probability or relative area under the normal curve is determined for that Z-value.
 - 3. The rejection area is determined by subtracting the probability (in step 2) from 0.5000.
 - 4. This area is doubled if a nondirectional (two-tailed) alternate hypothesis is used.

17

You can find the Z-Table in most statistics books even online