Unsupervised Classification

Classification = simplification, mapping

The early promise of satellite imagery: (1970s-80s)

- A. Rapid map updating
- B. Automated mapping of 'Land Cover'
- avoid manual digitizing ... by use of multispectral band data

Manual digitizing (yawn ...)

e.g. BC VRI(vegetation resource inventory)

BC TRIM data layers 7027 x 1:20,000 tiles

NTS 1:50,000 example

All federal NTS map Sheets (13,370) created from Air photos

Human interpretation / classification relies on attributes such as: Shape, pattern, texture, shadows, size, association, <u>tone</u>, <u>colour</u>

Algorithms mostly use Digital Number (DN) =~digital version of tone/colour

Remote Sensing Classification

- Automated grouping of similar pixels using <u>multispectral</u> DNs
- Software developed following 1972 (Landsat 1)
- Digital alternative to manual mapping of Land Cover

Classified layer in the Virginia Urban Tree Canopy Mapper - http://www.utcmapper.frec.vt.edu

Land Use v Land Cover (LULC) e.g. parks

Sugarbowl-Grizzly Den

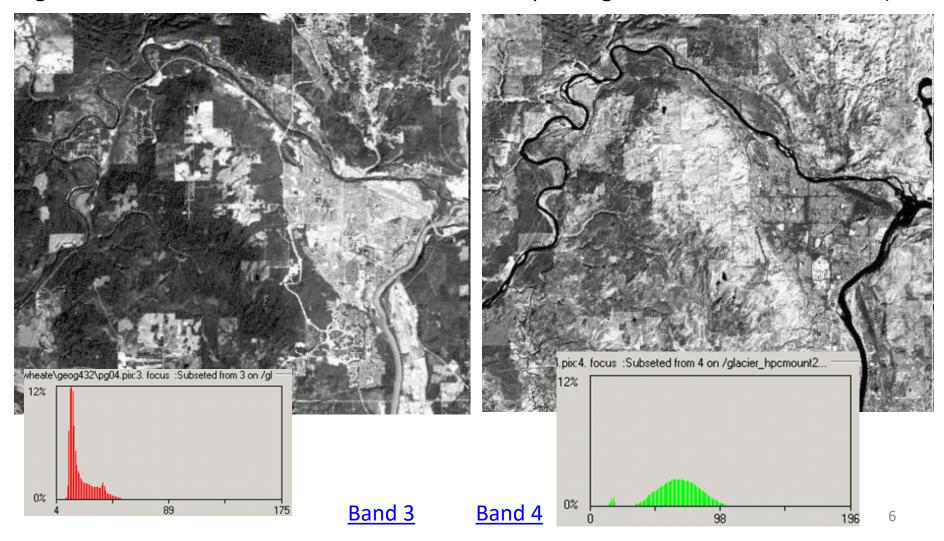
Bowron Lakes

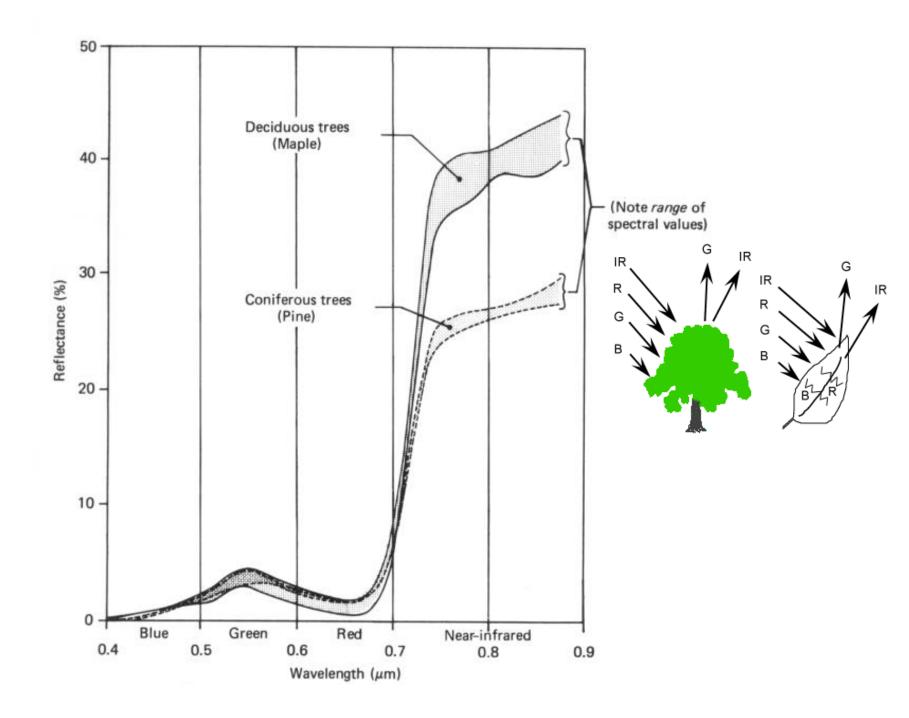
Mt. Egmont / Taranaki, NZ

Can we use just one band to classify?

One image band could only be treated as a monochrome air photo (interpretation)

Digital Numbers from one band alone are rarely enough - features are not unique

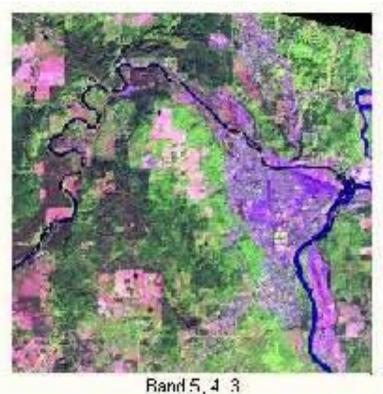




Band / channel selection TM: 1-7; OLI/TIRS 1-11

Thematic Mapper Operational Land Imager

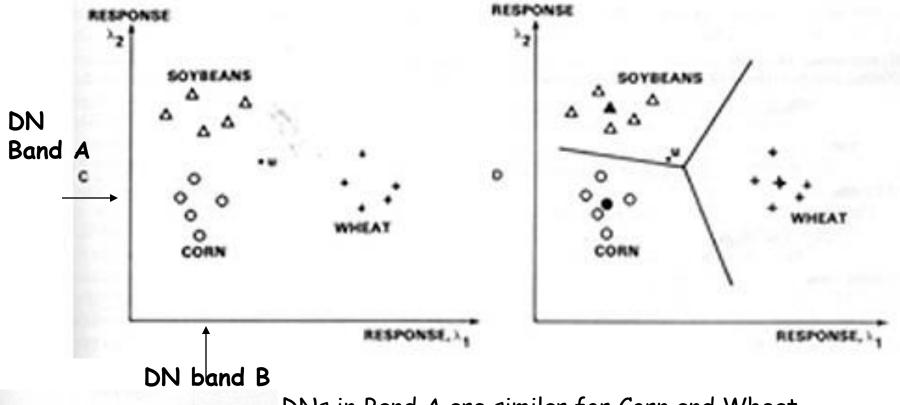


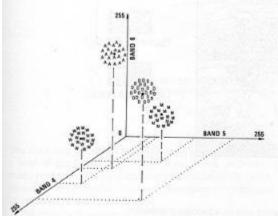


Landsat TM has 7 bands: You would NOT select 3 visible bands to classify

The visible bands are similar - and thus the composite is low in contrast

The role of <u>multispectral</u> sensing in classification



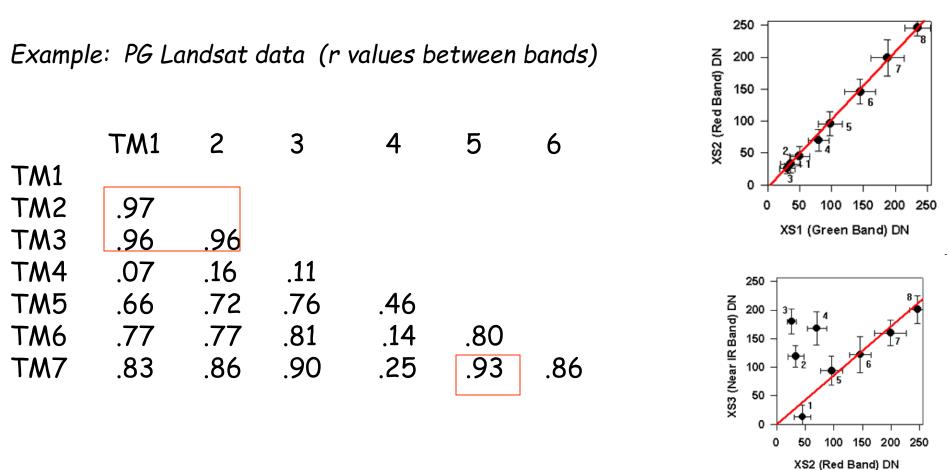


DNs in Band A are similar for Corn and Wheat DNs in Band B are similar for Corn and Soybeans

... but if we use both Bands A and B, then all 3 differ

... Algorithms are 'per pixel' classifiers

band correlation coefficients and scatterplots

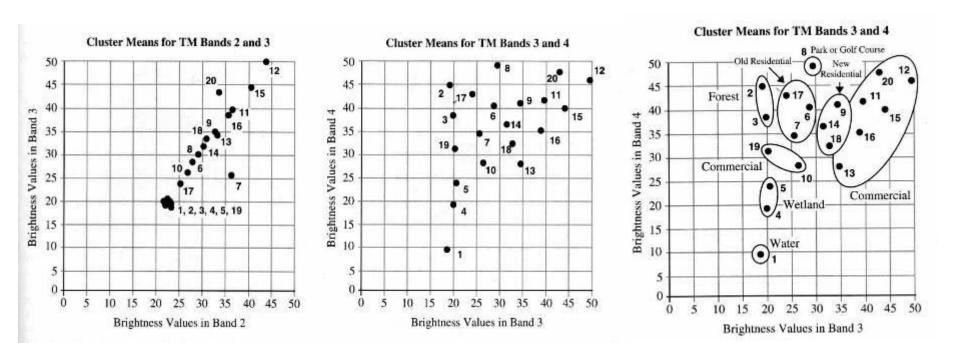


The Visible bands are highly correlated (similar) .. (r = .96 to .97)

- .. so also are bands 5 and 7 (r = .93)
- band 4 (near-IR) is not very correlated with Visible or MIR (nor thermal)
- Note: these values will vary for different environments e.g. urban, desert, forested

Unsupervised classification = 'clustering'

Example of Visible bands only (2,3) versus Visible and Near-IR



Two bands are shown for simplicity

Input bands selected - minimum 3 or 4 bands;

Note: you can only display 3 bands, but you can input many more

Classification: Band / Channel Selection

How to choose which ones to use:

- 1. Low correlation e.g. TM 3-4-5 or 2-4-7 (Visible-NIR-MIR)
- 2. Past experience, visual examination, logical thinking
- 3. Channels that separate the features we want to identify (based on DNs / spectral curves / histograms)

- 4. Or simply just use them all? ... (except the thermal band)
- This can confuse the classifier and not find clusters

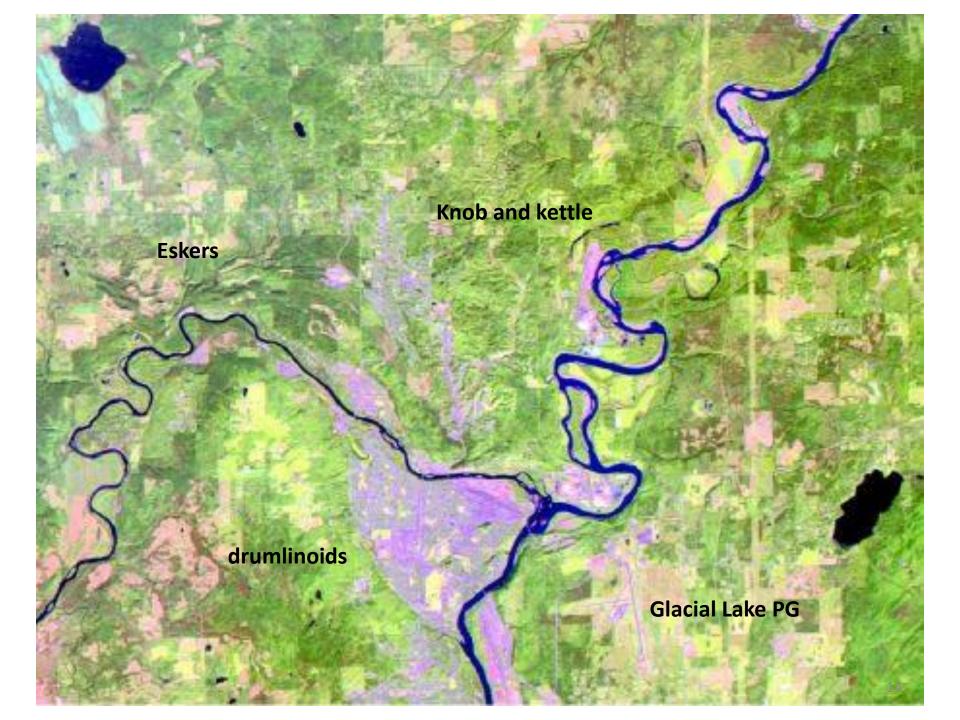
Unsupervised classification

Characteristics

- -user initially needs little 'a priori' knowledge of area
- -The software clusters pixels by natural DN groupings (based on similarity and contrast 'natural breaks')

Steps

- determine how many classes / clusters
- determine which input bands / channels to use
- run classifier : K-means or Isodata
- Rerun with more clusters if needed
- assign names to classes (merge classes if needed)



Unsupervised result - 10 classes (clusters)

This is a new <u>channel</u> in your .pix file

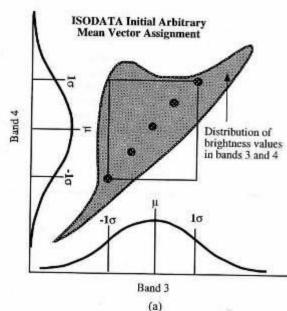
- It's not a band

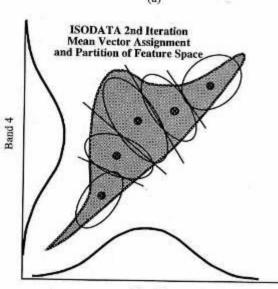
Colours are random

Note: urban classification is NOT often easy!

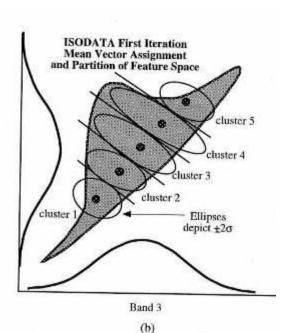
Unsupervised - how it works YIKES! (do we need to know this?)

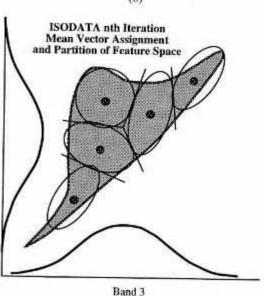
- ☐ Algorithm starts with statistical seed points
- ☐ Assigns each pixel to the closest seed
- ☐ Calculates group mean in 'n-dimensional' space
- ☐ Re-assigns pixels to the closest group mean
- ☐ Re-calculates group mean
- ☐ Iterates (10?) until relatively little change and fixes groupings





Band 3





unsupervised classification -algorithms and iterations

1. K-means minimises within cluster range of DNs

2. Fuzzy K-means enables mixed membership, based on distribution of the cluster

3. Isodata can also merge or split clusters, so the number of clusters is more flexible

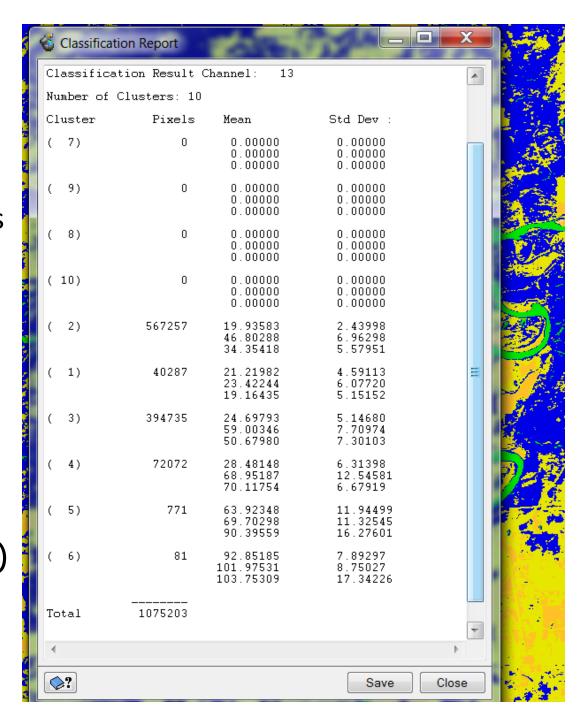
classification report 1 iteration

Note:

clusters with 0 pixels

DN values for bands 3,4,5 averages

Final step ..
Assigning names
to clusters
(and merge some)



After 16 iterations and 16 classes/clusters

	tion Input Ch	nannels: 3,4	ans Unsupervised ,5
lassifica	tion Result (Channel: 9	
umber of (Clusters: 16		
luster	Pixels	Mean	Std Dev :
2)	296774	23,24140	8,24662
		44.77742	8,91783
		32,44915	10,04080
3)	292356	24,48324	7,14404
		67,65602	10.67916
		49,51679	9,53926
4)	155525	24.75149	5,03961
		107,39487	18,20386
		74,22362	13,35878
1)	135750	42,07941	13,08230
		26,82458	8,12628
		16,47926	11.00162
5)	151100	42,87475	9,25817
		60,36603	13,13133
		89,47187	18,67191
7)	86198	84,79987	12,60066
11000		59,46275	9,37685
		20.03181	14.03484

	19,40815	16,75611
79592	151.05591 105.45887 20.59924	9,22842 8,13428 20,61743
60789	175,72850 125,70449 25,36989	8,52307 8,00244 25,79001
55539	201,23238 142,52280 17,82207	7,64972 7,16980 16,81002
54187	225,29511 159,06710 16,18565	7,08180 6,45671 13,71707
56164	247.23974 172.45732 13.11189	6,06449 4,56608 7,50873
113965	254,84619 185,52277 12,44097	0.99330 4.41832 4.33174
51887	254.93781 202.95095 14.38227	0.76476 5.59141 7.67388
33140	254,99879 225,13265 13,28431	0,08035 8,29124 3,35810
	50789 55539 54187 56164 113965 51887	79592 151.05591 105.45887 20.59924 60789 175.72850 125.70449 25.36989 55539 201.23238 142.52280 17.82207 54187 225.29511 159.06710 16.18565 56164 247.23974 172.45732 13.11189 113965 254.84619 185.52277 12.44097 51887 254.93781 202.95095 14.38227

85354

Fuzzy classification – each pixel has potential membership in more than one cluster

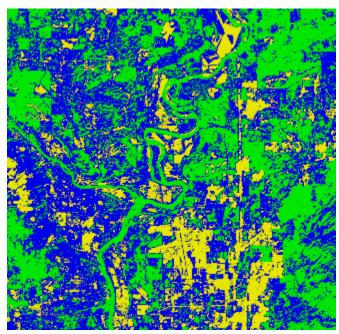
Merging and adding classes

Merging - if clusters are not really separate features; Clusters are merged if they overlap spatially or are similar spectrally.

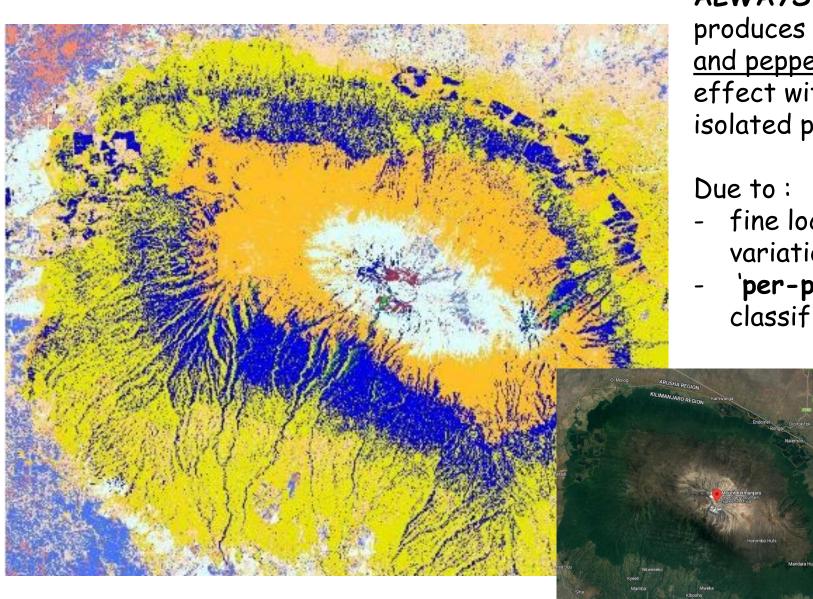
Splitting / adding

If one cluster covers too much area - run again with more clusters

Can generate many clusters, and then group merge later ...



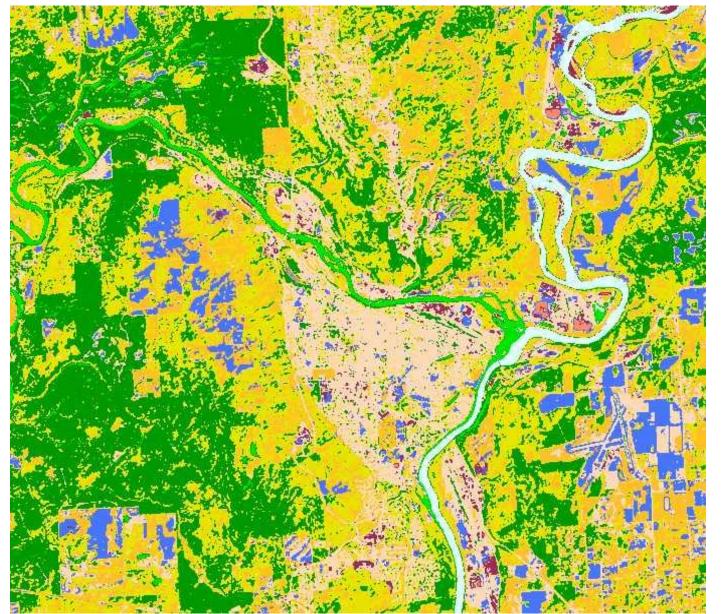
Mt. Kilimanjaro



Classification **ALWAYS** produces a <u>'salt</u> and pepper' effect with isolated pixels

- fine local DN variations
- 'per-pixel' classifiers

reduced by Filters (GIS) / Sieve (Catalyst)



Filters can blur the result

Only PCI
Catalyst (?) has
SIEVE option

Minimum cluster:

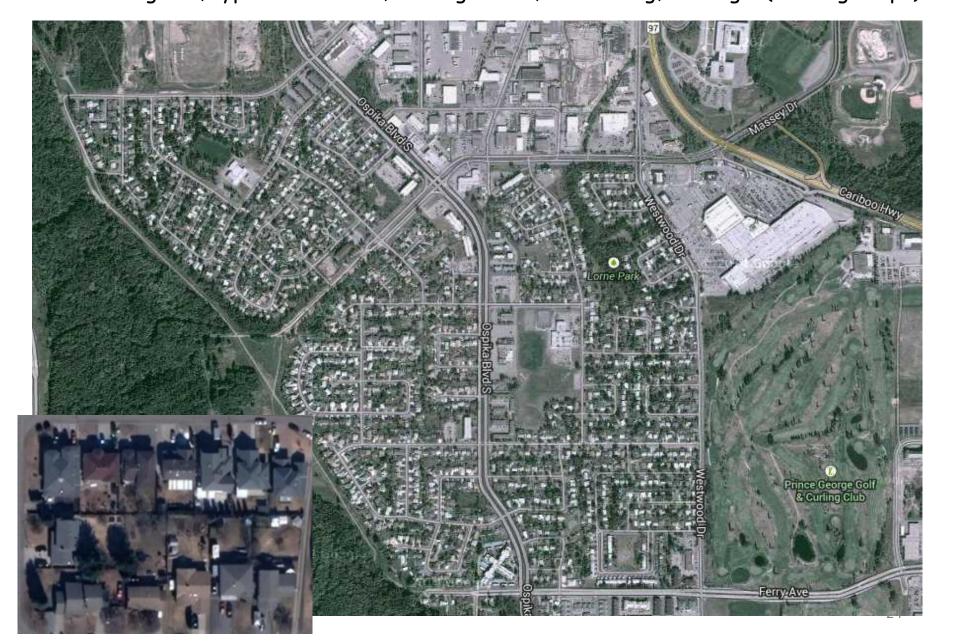
GIS polygon: 1 ha ~ 11 pixels
Or 2 or 5 ha?

Challenges in classification - why it doesn't always beat digitising

There are many spatial variations in reflectance (a range of DNs for a feature) e.g. stand purity, understory, age/maturity, density, disease, sun angle, topography

Classes/clusters: water, bare rock, glaciers, deciduous, coniferous, shadow?, cutblocks, planted...

URBAN / HUMAN - mosaic of smaller features inside a 30 metre pixel - amount of grass, types of material, roofing colour, weathering, sun angle (building shape)



Overall summary on classification

It is always complex - the classes and contrasts
There are many causes of spatial variations in reflectance
Most (natural) features are continuous, not discrete

Using only DNs:

Any land cover types have a range of values Conversely, different cover types can look similar

Further complications for all images:

- a. moisture (recent events)
- b. edge (mixed) pixels
- c. sun angle (illumination) mid-morning

Textbook classification goal: ~ 85% accuracy But even manual digitizing may not do any better