Unsupervised Classification

Classification = simplification, mapping

The early promise of satellite imagery: (1970s-80s)
A. Rapid map updating
B. Automated mapping of ‘Land Cover’

- avoid manual digitizing ... by use of multispectral band data




Manual digitizing (yawn ...)

e.g. BC VRI
(vegetation BCGovTileCache Map Satellite
resource inventory)

BC TRIM data layers
7027 x 1:20,000 tiles

megey 02013 TNES /) Arbus Lancss: ' Capemicus, Vs Technoogier | TemzofUss | Ragorn 2 maep ence



NTS 1:50,000 example
All federal NTS map Sheets (13,370) created from Air photos

Human interpretation / classification relies on attributes such as:
Shape, pattern, texture, shadows, size, association, tone, colour

Algorithms mostly use Digital Number (DN) =~digital version of tone/colour
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Remote Sensing Classification

" Automated grouping of similar pixels using multispectral DNs

sSoftware developed following 1972 (Landsat 1)

=Digital alternative to manual mapping of Land Cover
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Classified layer in the Virginia Urban Tree Canopy Mapper - http://www.utcmapper.frec.vt.edu



Land Use v Land Cover (LULC) e.g. parks

SugarbowlI-Grizzly Den Bowron Lakes Mt. Egmont / Taranaki, NZ




Can we use just one band to classify ?

One image band could only be treated as a monochrome air photo (interpretation)

Digital Numbers from one band alone are rarely enough - features are not unique
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http://gis.unbc.ca/courses/geog432/lectures/lect9/band3.jpg
http://gis.unbc.ca/courses/geog432/lectures/lect9/band4.jpg

s

Reflectance (%)

N
o
1

10 H

Deciduous trees
(Maple)

(Note range of
spectral values)

Coniferous trees
(Pine)

w

G
_/ IR IR .
/,/} o \ / IR P
—‘-".0"" R
- \ . N\
B

Blue ’ Green ; Red ' Near-infrared

0.4 0.5 0.6 0.7 0.8 0.9
Wavelength (um)



Band / channel selection

TM: 1-7; OLI/TIRS 1-11
Thematic Mapper  Operational Land Imager

Landsat TM has 7 bands: You would NOT select 3 visible bands to classify

The visible bands are similar - and thus the composite is low in contrast



The role of multispectral sensing in classification
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.. but if we use both Bands A and B, then all 3 differ

.. Algorithms are 'per pixel’ classifiers
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band correlation coefficients and scatterplots

Example: PG Landsat data (r values between bands) 200 -
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The Visible bands are highly correlated (similar) .. (r = .96 to .97)
..so alsoare bands 5and 7 (r=.93)
band 4 (near-IR) is not very correlated with Visible or MIR (nor thermal)

: . : 10
Note: these values will vary for different environments e.qg. urban, desert, forested



Brightness Values in Band 3

Unsupervised classification = ‘clustering

Example of Visible bands only (2,3) versus Visible and Near-IR

Cluster Means for TM Bands 3 and 4

Cluster Means for TM Bands 2 and 3 Cluster Means for TM Bands 3 and 4 ;
g Puk or Golf Course
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Brightness Values in Band 3

Two bands are shown for simplicity
Input bands selected - minimum 3 or 4 bands;

Note: you can only display 3 bands, but you can input many more



Classification: Band / Channel Selection

How to choose which ones to use:

1. Low correlation e.g. TM 3-4-5 or 2-4-7 (Visible-NIR-MIR)

2. Past experience, visual examination, logical thinking

3. Channels that separate the features we want to identify
(based on DNs / spectral curves / histograms )

4. Or simply just use them all ? ... (except the thermal band)
- This can confuse the classifier and not find clusters



Unsupervised classification
Characteristics

-user initially needs little 'a priori’ knowledge of area

-The software clusters pixels by natural DN groupings
(based on similarity and contrast - ‘'natural breaks’)

Steps

- determine how many classes / clusters

- determine which input bands / channels to use
- run classifier : K-means or Isodata

- Rerun with more clusters if needed

- assign names to classes (merge classes if needed)






Ty N R Bl oy SRRl & o 2% This is a new channel
L g : e s e in your .pix file

- It’s not a band

Colours are random

Note: urban
classification is
NOT often easy!
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Unsupervised - how it works .... YIKES! (do we need to know this?)

O Algorithm starts with

statistical seed points

[ Assigns each pixel to the

closest seed

[ Calculates group mean ...

in ‘n-dimensional’ space

[ Re-assigns pixels to the

closest group mean

0 Re-calculates group mean

Q Iterates (10 ?) until

relatively little change and

fixes groupings

Band 4

Band 4

ISODATA Initial Arbitrary
Mean Vector Assignment

Distribution of
brightness values
in bands 3 and 4

ISODATA First Iteration
Mean Vector Assignment
and Partition of Feature Space

Y cluster 2
“4— Ellipses
depict +20

Band 3

ISODATA 2nd Iteration
Mean Vector Assignment
and Partition of Feature Space

Band 3
(b)

ISODATA nth Iteration

Mean Vector Assignment
and Partition of Feature Space

Band 3



unsupervised classification -algorithms and iterations

1. K-means minimises within cluster range of DNs

2. Fuzzy K-means enables mixed membership,
based on distribution of the cluster

3. Isodata can also merge or split clusters, so the
number of clusters is more flexible



classification report
1 iteration

Note:
# clusters with 0 pixels

DN values for bands
3,4,5 averages

Final step ..
Assighing hames
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(and merge some)
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After 16 iterations and 16 classes/clusters

Classification Report

{ 2)

( 3

{ 4

{ 1)

{ 8)

{7

Fuzzy classification — each pixel has potential
membership in more than one cluster

Cluster

Mumber of Clusters: 16

Pixels

296774
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151100

861328

Mean
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43,51679

24 ,75149
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16,47925

42,87475
B0, 36603
89,47187

84,79387
53.46275
20,03181

3.4,5

Classification Algorithm: Fuzzy K-Means Unsupervised
Classzification Input Channels:
Classification Result Channel:

Std Dev @
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10, 04080
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0,08035
8.29124
3,35810



Merging and adding classes

Merging - if clusters are not really
separate features; Clusters are merged
if they overlap spatially or are similar
spectrally.

Splitting / adding

If one cluster covers too much
area - run again with more clusters

Can generate many clusters, and
then group merge later ...




Mt. Kilimanjaro

Classification
ALWAYS
produces a 'salt

and pepper
effect with
isolated pixels

Due to:
fine local DN
variations
‘per-pixel’
classifiers



Sieve (Catalyst)
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Challenges in classification - why it doesn't always beat digitising
There are many spatial variations in reflectance (a range of DNs for a feature)
ory, age/maturity, density, disease, sun angle, topography
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Classes/clusters: water, bare rock, glaciers, deciduous, coniferous, shadow?, cutblocks, planted..




URBAN / HUMAN - mosaic of smaller features inside a 30 metre pixel

- amount of grass, types of material, roofing colour, weathering, sun angle (building shape)
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Overall summary on classification

It is always complex - the classes and contrasts
There are many causes of spatial variations in reflectance
Most (natural) features are continuous, not discrete

Using only DNs:
Any land cover types have a range of values
Conversely, different cover types can look similar

Further complications for all images:

a. moisture (recent events)

b. edge (mixed) pixels

c. sun angle (illumination) - mid-morning

Textbook classification goal: ~ 85% accuracy
But even manual digitizing may not do any better



