Unsupervised classification: review

Characteristics

-user needs no 'a priori' knowledge of area (but it helps)

software clusters pixels by natural DN groupings
(based on similarity and contrast = 'natural breaks')

Steps

- determine input bands / channels
- determine how many classes / clusters
- run classifier : K-means or Isodata
- assign names to classes (merge classes if needed)
- calculate accuracy ?

Supervised classification

Characteristics:

User has 'a priori' info: can identify homogenous known areas

Software groups the pixels according to these 'training areas'

Steps

- determine input bands / channels
- identify 'training areas' for each class
- Check the statistics for separability
- run classifier: minimum distance / maximum likelihood
- Calculate accuracy

Understanding images for training areas selection Reflection in visible / near IR / midIR

In a Landsat TM 5-4-3 Colour composite

Visible = Brightness

Near-IR= vegetation (vigour)

MIR = dryness –low moisture

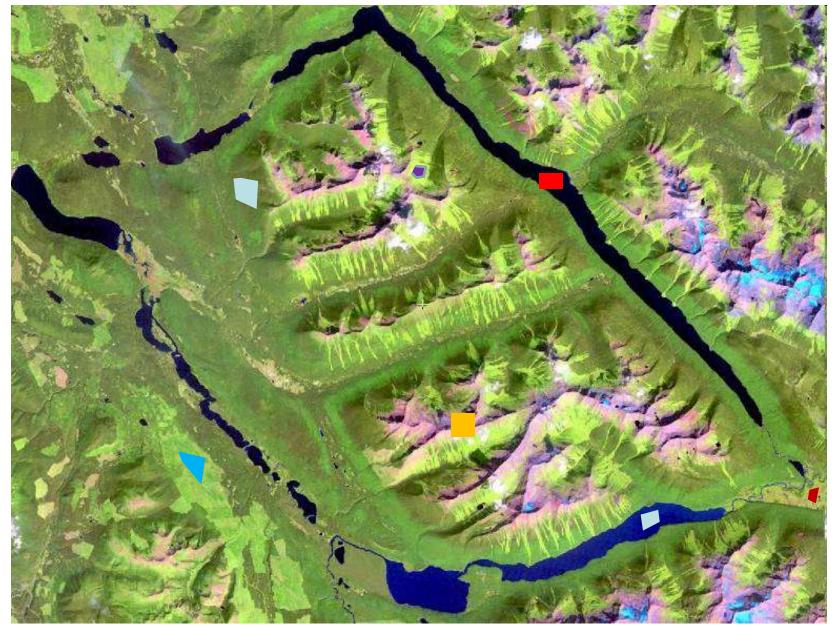
Red = Dry, not much veg.

Green = Healthy Vegetation brighter = deciduous

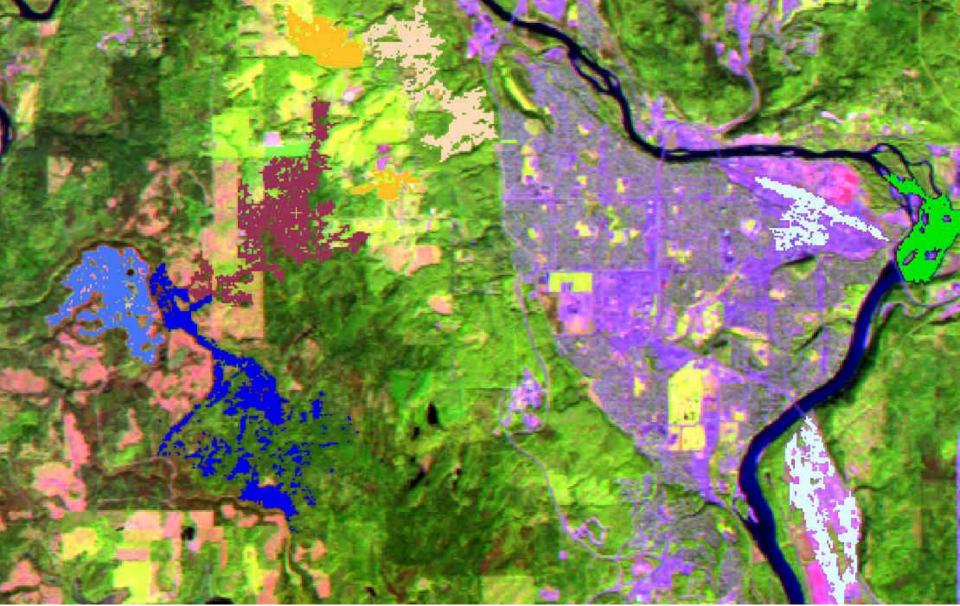
Black = low reflection, water

Purple (Red / Blue) = built-up

Creating training areas - digitizing polygons (in lieu of ground data)



Raster seeding – sample areas, don't try to fill it all



	Raster Seeding	
Input Layer		
Selection criteria:	Classification Input	Layers
Selected layers:	pg14sept2011.pix:5.4,3	
Output Layer Selected layer: Trai	ning areas	
Properties		
Input pixel value to	olerance: 10 🗘 1X 💙	
Neighborhood :	🧧 4 Connect 🖳 🔿 8 Connect	
\$?		Close

4

Raster seeding

Supervised classification: separability

Create ground training sites per class Create class signatures and check for differences (separability)

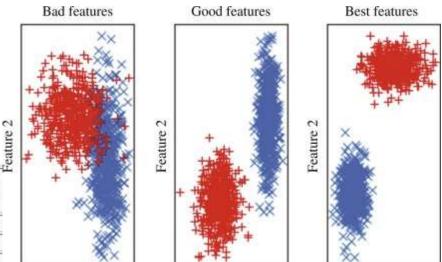
2

3

BAND:

Class

1



1. Seawater	57.4	16.0	12.0		Ser 1			×2×	
2. Sediments1	62.2	19.6	13.5	0.517	∕%××	+***		*~	
3. Sediments2	69.8	25.3	18.8	F	eature 1	Feature 1		Feature 1	
4. Bay Sediment	59.6	20.2	16.9	6.0	3.4	111.9	1.6	598	
5. Marsh	61.6	22.8	27.2	42.0	37.3	117.9	14.9	861	
6. Waves Surf	189.5	88.0	100.9	56.3	22.3	111.9	6.4	1001	
7. Sand	90.6	41.8	54.2	43.9	86.3	121.3	52.8	812	
8. Urban1	77.9	32.3	39.3	37.5	53.9	123.5	29.6	747	
9. Urban2	68.0	27.0	32.7	36.3	52.9	125.7	27.7	2256	
10. Sun Slope	75.9	31.7	40.8	43.5	107.2	126.5	51.4	5476	
11. Shade Slope	51.8	15.6	13.8	15.6	14.0	109.8	5.6	976	
12. Scrublands	66.0	24.8	29.0	27.5	58.4	114.3	29.4	1085	
13. Grass	67.9	27.6	32.0	49.9	89.2	117.4	39.3	590	
14. Fields	59.9	22.7	22.6	54.5	46.6	115.8	18.3	259	
15. Trees	55.8	19.6	20.2	35.7	42.0	108.8	16.6	2048	
16. Cleared	73.7	30.5	39.2	37.1	88.4	127.9	45.2	309	

http://www.fas.org/irp/imint/docs/rst/Sect1/Sect1_17.html

Transformed Divergence - Battacharaya Distance measure

0.0 < x < 1.0 (poor separability)

1.0 < x < 1.9 (moderate separability)

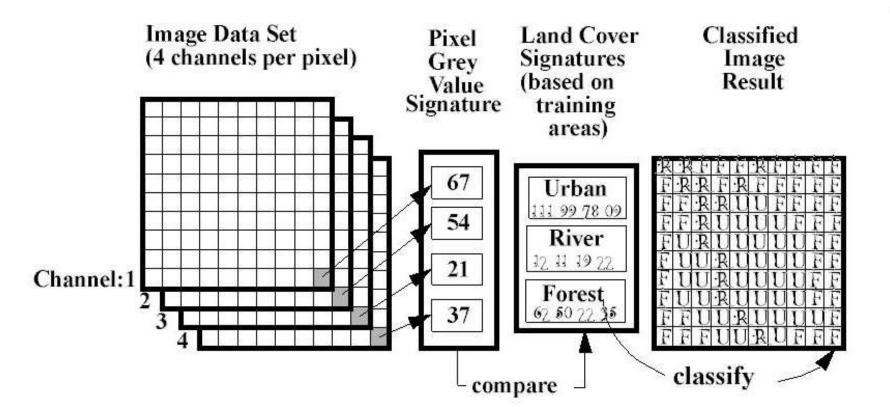
1.9 < x < 2.0 (good separability)

Poor separability (0.0 < x 1.0) indicates that the two signatures are statistically very close to each other. You have two options:

One signature can be discarded (suggested when the separability is closer to 0), or the two signatures can be merged using **Merge** option (suggested when the separability is closer to 1).

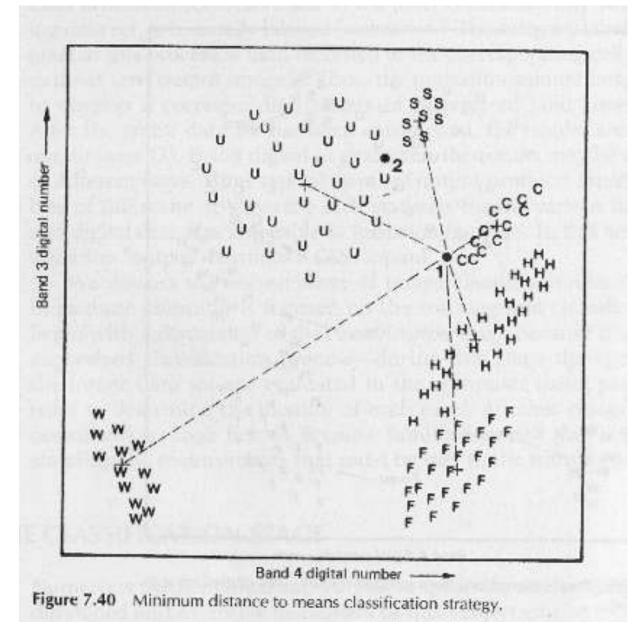
OK ? ... ready to run the classifier

Supervised - class assignment



Per pixel classifiers

Supervised classification methods: a. Minimum distance



The graphic is 2D

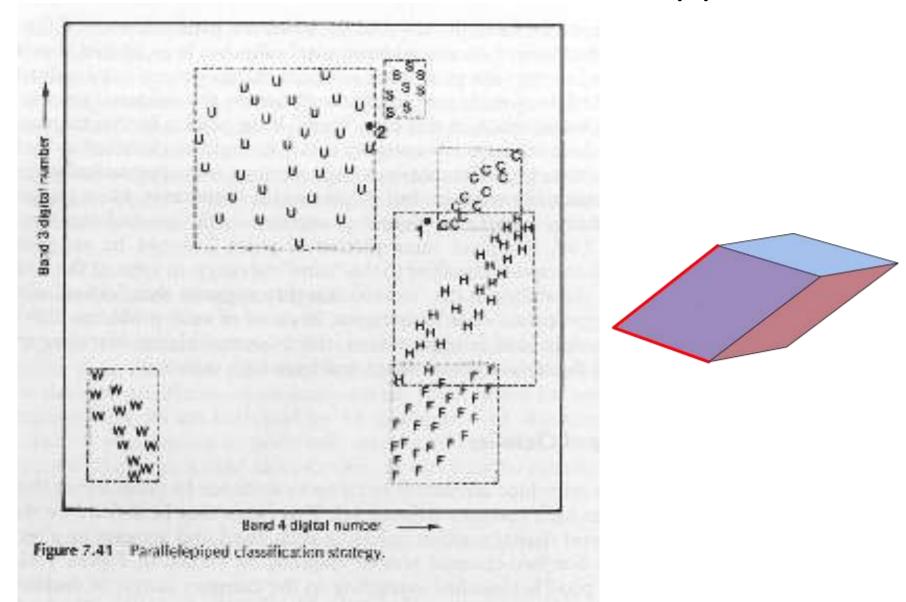
Letters indicate a training pixel

Think in ndimensions:

The screen can only display 3 bands but a classifier can input many more

Supervised classification methods:

b: Parallelepiped ??



Less used due to overlap of training areas – conflict of assigning pixels to classes

Supervised classification methods

Band 3 digital number Equiprobability contours Band 4 digital number Figure 7.44 classifier. Equiprobability contours defined by a maximum likelihood

c: Maximum likelihood

With or without null class

Supervised classification: how it works

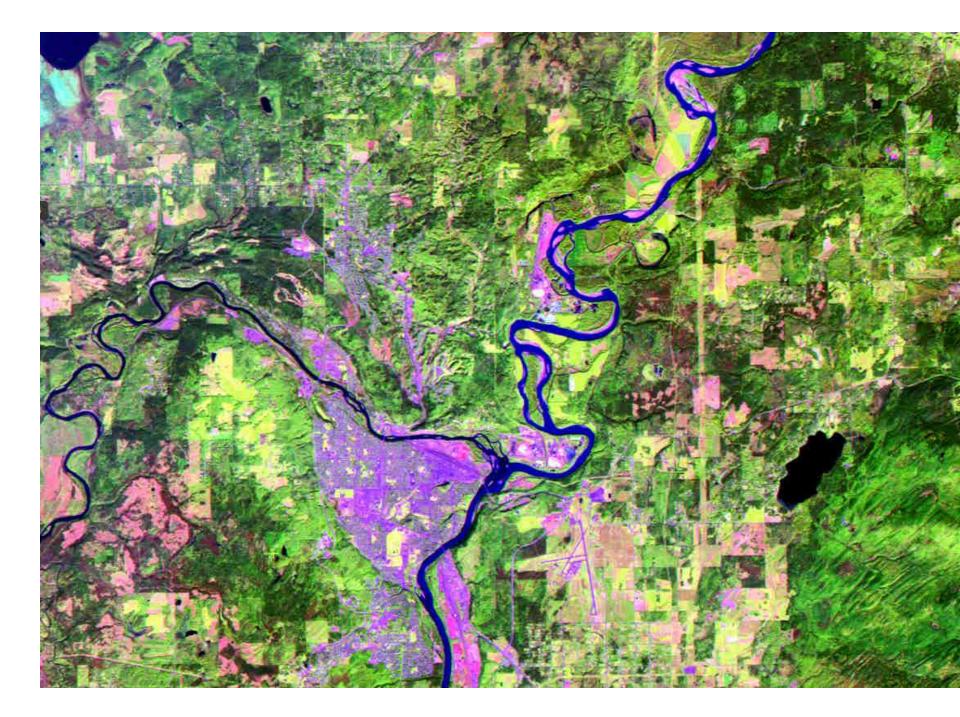
Minimum distance: each pixel is assigned to the class whose mean is closest to data point

(in n-dimensions)

Parallelepiped: Each pixel is assigned to the class whose range it falls in (overlap = double assignment)

Maximum Likelihood: each pixel is assigned to the class for which it has the highest probability.

Max. likelihood can be run with a 'null class' (where some pixels have no assignment to any class)



Isodata

Merging and adding classes

Merging

a. if classes overlap spatially or b. are not distinguishable spectrally.

Splitting / adding: one class covers too much area

[Unsupervised: - run again with more clusters]

Supervised:- create new training class or delete some training areas

Areas are unclassed - create new training class

Post-classification steps

>Check the display

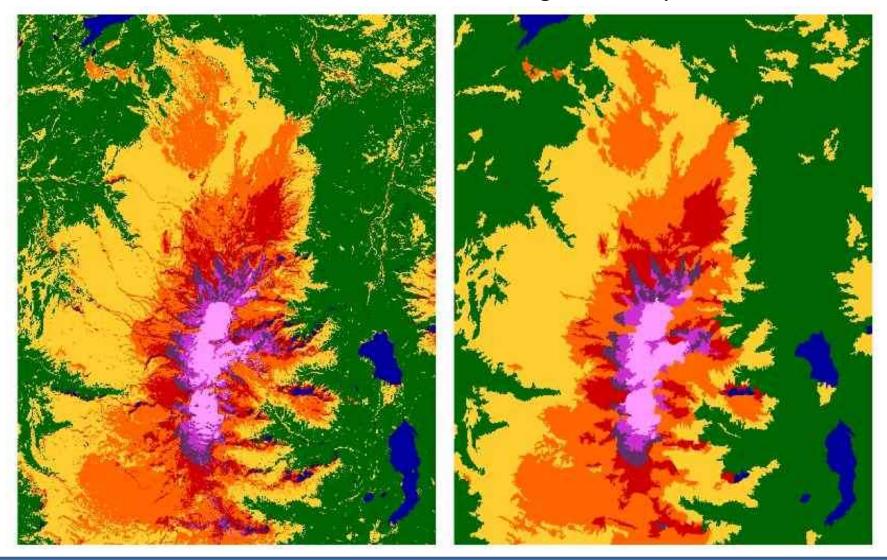
>Merge / add classes

>Sieve ... to remove isolated pixels

>Accuracy assessment

Conversion of results to vectors - see lab 6

Mt. Edziza - classification and sieve - removing isolated pixels



- recognises connectivity of adjacent pixels in the same class
- special classes e.g. lakes or wetlands can be specified and preserved

Accuracy assessment

This requires knowing what is reality at some pixels (ground truthing), and how they were classified. This generates a **'confusion matrix'**

		Re	ference test				
	Class	Road	Building	Green	Bare	Row total	User's Accuracy
Remote	Road	101	0	25	20	146	69.18%
sensing	Building	0	128	0	17	145	88.28%
classificatio	Green	10	0	104	1	115	90.43%
n	Bare	2	4	2	105	113	92.92%
	Column total	113	132	131	143	519	
	Producer's accuracy	89.38%	96.97%	79.39%	73.43%		

Overall accuracy = 84.4%, Kappa coefficient: 0.825.

The diagonal represents pixels correctly classified An off diagonal column element = an 'error of omission' An off diagonal row element = 'error of commission'

http://www.gisdevelopment.net/application/nrm/overview/mma09_Mustapha.htm

Error matrix – pixel classifications, right or wrong ?

Columns – ground truth data – what were these pixels ?

Classes	River	Built Up Area	Vegetation	Agri Land	Waterbody	Vacant /Soil	Classified Totals	Omissi on Error	Commis sions Error
River	36	0	1	0	4	1	42	14%	14%
Built Up Area	1	38	0	0	0	3	42	10%	10%
Vegetation	0	0	37	4	0	1	42	17%	12%
Agri Land	1	0	4	35	1	1	42	14%	17%
Waterbody	4	0	1	0	37	0	42	12%	12%
Vacant/Soil	0	4	1	2	0	35	42	14%	17%
Classified Totals	42	42	44	41	42	41	252		

Rows: how were these pixels classified ?

Producer's accuracy: based on ground truth pixels

User's accuracy: based on classified pixels

Measuring accuracy

Producer's accuracy: based on ground truth pixels

User's accuracy: based on classified pixels

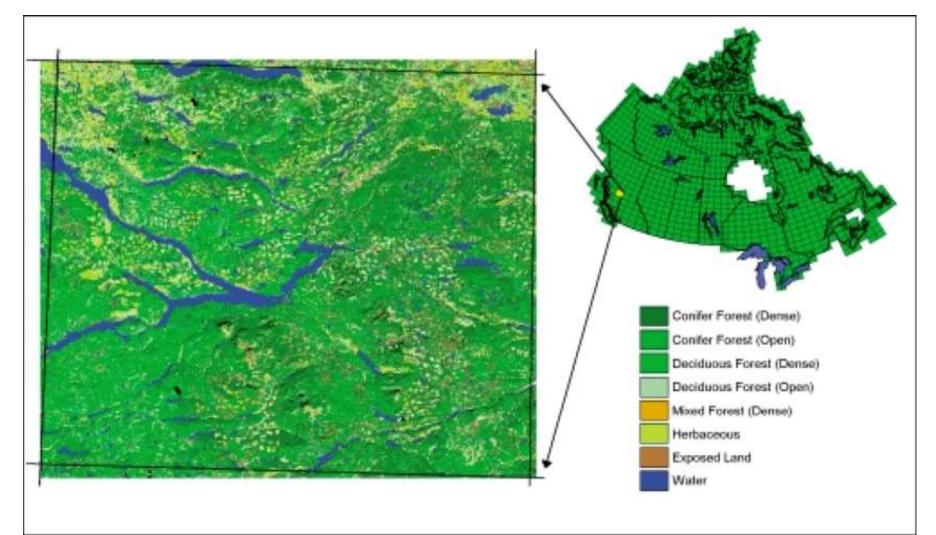
Refere	ence DataDat water	a ice	snow	conif	decid	alpine	rock	deglac	TOTALS
water ice snow conif decid alpine rock deglac	2 0 0 0 0 0 0 0	0 5 1 0 0 0 1	0 0 6 0 0 0 0 0	0 0 14 2 0 0	0 0 1 4 1 0 1	0 0 0 0 1 0 1	0 1 2 0 0 0 4 5	0 0 0 0 0 0 0 3	2 6 9 15 6 2 4 11
Totals	2	7	6	16	7	2	12	3	55
F water ice snow conif decid alpine rock deglad	100. 87. 57. 50. 33.	000% 429% 000% 500% 143% 000% 333%	racy U 100.0 83.3 66.6 93.3 66.6 50.0 100.0 27.2	33% 67% 33% 67% 00%	Kappa 1.0000 0.8090 0.6259 0.9060 0.6181 0.4811 1.0000 0.2308	accur ≻ 0.	racy ir 7 = go		

Error (Confusion) Matrix Classified

EOSD Earth Observation for Sustainable Development of Forests

80% Canada mapped from Landsat 7 ~2000

- using supervised classification, 480 Landsat scenes, 630 1:250,000 map sheets

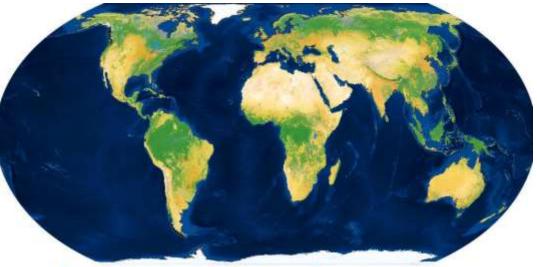


Global Sentinel classification (Esri)

https://www.bbc.com/news/science-environment-57615408

https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685a24ae2dc0c73d4ac Global viewer

https://caitlin-kontgis.medium.com/mapping-the-world-in-unprecedented-detail-7c0513205b90



💶 estar 💶 trans 💷 grass 💷 Reador repotation tana anal casa a tanàn any tanàn tanàn

Classification review

Unsupervised classification:

clustering into classes identification of classes by user

Supervised classification:

training areas to 'train' the classification, check the statistics of the classes created check resulting coverage for errors and accuracy

Unsupervised	Supervised
Unknown classes beforehand	Pre-defined classes
Clusters may not match desired classes	Defined classes may not match natural classes
Desired clusters may be unidentifiable	Selected training areas may be inadequate
a posteriori' cluster identification time-consuming	'a priori' training is time consuming
Unexpected categories may be revealed	Only predefined classes will be found
Immediate execution, quick	Takes longer, but better directed

Classification summary

There are many articles on classification approaches:

Input channel combinations (see the next lectures)

Best algorithms - unsupervised and supervised

New approaches e.g. include texture, shape etc.

Object based image analysis (not pixel based)
 .. See next slide

Object Based Image Analysis Object not pixel based

