### **Remote Sensing:** refers most often to *... the acquisition and analysis of aerial and satellite images*

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact. (Wikipedia)

Remote sensing is the process of detecting and monitoring the physical characteristics of an area by measuring its reflected and emitted radiation at a distance (typically from satellite or aircraft). (USGS)

Remote sensing is the acquisition of information about a surface without actually being in contact with it. (NRCan)

## Remote sensing and the electromagnetic spectrum





The spectrum provides the 'layers' in RS





#### Here are the 7 rainbow colours from shortest to longest wavelength.

- Violet shortest wavelength, ~ 400-420 nanometers
- Indigo 420 440 nm.
- Blue 440 490 nm.
- Green 490 570 nm.
- Yellow 570 585 nm.
- Orange 585 620 nm.
- Red longest wavelength, ~ 620 -700nm
- •1 nm = 1 billionth of a metre

Units of wavelength measurement **1kilometre** = 1000 metres m Millimetres: thousands of a metre mm **micrometres** 'microns': millionths of a metre  $\mu$ m billionths of a metre nanometres: nm trillionth of a metre Picometres pm [1 nanometre = 10 angstroms Å]

e.g. visible wavelengths

Blue 0.4 - 0.5 μm (microns)

Green 0.5 - 0.6 µm

Red 0.6 - 0.7 µm

= 400 to 500 nm

- = 500 to 600 nm
- = 600 to 700 nm



Wavelengths and Frequencies: Shorter Waves – Higher Frequency Longer Waves – Lower Frequency



# Panchromatic air photo: 15<sup>th</sup> / University Way



# Colour air photo: 15<sup>th</sup> / University Way



#### COMMON ANIMALS AND THE COLORS THEY CAN SEE

| ANIMAL                                   | THE COLORS THEY SEE       | RELATIVE<br>TO HUMANS |
|------------------------------------------|---------------------------|-----------------------|
| SPIDERS (jumping spiders)                | ULTRAVIOLET AND GREEN     | Different             |
| INSECTS (bees)                           | ULTRAVIOLET, BLUE, YELLOW | Different             |
| CRUSTACEANS (crayfish)                   | BLUE AND RED              | Less                  |
| CEPHALOPODS (octopi and squids)          | BLUE ONLY                 | Less                  |
| FISH                                     | MOST SEE JUST TWO COLORS  | Less                  |
| AMPHIBIANS (frogs)                       | MOST SEE SOME COLOR       | Less                  |
| REPTILES (snakes*)                       | SOME COLOR AND INFRARED   | Different             |
| BIRDS                                    | FIVE TO SEVEN COLORS      | More                  |
| MAMMALS (cats)                           | TWO COLORS BUT WEAKLY     | Less                  |
| MAMMALS (dogs)                           | TWO COLORS BUT WEAKLY     | Less                  |
| MAMMALS (rabbit)                         | BLUE AND GREEN            | Less                  |
| MAMMALS (rats)                           | ULTRAVIOLET, BLUE, GREEN  | Different             |
| MAMMALS (squirrels)                      | BLUES AND YELLOWS         | Less                  |
| MAMMALS (primates-apes and chimps)       | SAME AS HUMANS            | Same                  |
| MAMMALS (African monkeys)                | SAME AS HUMANS            | Same                  |
| MAMMALS (South American monkeys)         | CAN'T SEE RED WELL        | Less                  |
| * pit vipers, some boas and some pythons |                           |                       |

1800-01: discovery of IR and UV by William Herschel and Johann Ritter

## 1950s: Infra-red (IR) photography

IR was developed during the Korean War to distinguish between healthy vegetation (refelecting IR) and camouflage. Hence it was known as 'camouflage detection' film or 'false colour'.



| Normal colour film<br>(Energy captured by<br>film) | IR film<br>(Energy captured by<br>film) | Colour that<br>results on<br>film | Di<br>Di |
|----------------------------------------------------|-----------------------------------------|-----------------------------------|----------|
| В                                                  | G                                       | Blue                              | В        |
| G                                                  | R                                       | Green                             | G        |
| R                                                  | IR                                      | Red                               | R        |

#### Table 2 : Characteristics of normal colour and false colour film





#### PGmap spring 2014 natural colour



Advantages of natural colour:

- 1. What most interpreters are familiar with
- 2. Matches online mosaics e.g. Google Maps/Earth, Bing maps

PGmap spring 2014 IR image: <u>https://pgmappub.princegeorge.ca/Html5Viewer/?viewer=PGMapMobile</u>



Summary of advantages of (near) Infra-Red wavelengths:

- 1. Vegetation differences are enhanced e.g. coniferous v deciduous etc..
- 2. Land-water distinctions are enhanced
- 3. Blue -most susceptible to haze- is removed

# SOLAR SPECTRUM



### The Infra-red portion of the EM spectrum

0.7 – 1.5 microns: near IR – vegetation biomass /health

1.3 – 3.0 microns: mid-IR - moisture content (inverse) Also referred to as ShortWave IR (SWIR)

Visible / Near and Mid-IR are **reflected** energy from the Sun

3.0- 15.0 microns: far IR – thermal (temperature) Some sources extend far-IR to 1000 microns (1 mm) Note: most of this energy is not reflected solar energy, but is **emitted** terrestrial energy

### Landsat TM band combinations: Visible versus IR combination

Visible wavelengths image

e.g. Google maps, earth (3-2-1)



Including Infrared (NIR / SWIR)

e.g. BC imap / GEOG357 labs (5-4-3)



#### The best displays include one band each from the visible, near-IR and mid-IR

# Landsat 5 Thematic Mapper bands (1984-2011)

| Band No. | Wavelength<br>Interval (µm) | Spectral<br>Response | Resolution (m) |
|----------|-----------------------------|----------------------|----------------|
| 1        | 0.45 - 0.52                 | Blue-Green           | 30             |
| 2        | 0.52 - 0.60                 | Green                | 30             |
| 3        | 0.63 - 0.69                 | Red                  | 30             |
| 4        | 0.76 - 0.90                 | Near IR              | 30             |
| 5        | 1.55 - 1.75                 | Mid-IR               | 30             |
| 6        | 10.40 - 12.50               | Thermal IR           | 120            |
| 7        | 2.08 - 2.35                 | Mid-IR               | 30             |

Multi-spectral remote sensing

### Landsat satellites 4,5,7 bands

| Band                                      | Wavelength  | Useful for mapping                                                                                |
|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|
| Band 1 - blue                             | 0.45-0.52   | Bathymetric mapping, distinguishing soil from vegetation and deciduous from coniferous vegetation |
| Band 2 - green                            | 0.52-0.60   | Emphasizes peak vegetation, which is useful for assessing plant vigor                             |
| Band 3 - red                              | 0.63-0.69   | Discriminates vegetation slopes                                                                   |
| Band 4 - Near Infrared                    | 0.77-0.90   | Emphasizes biomass content and shorelines                                                         |
| Band 5 - Short-wave<br>Infrared           | 1.55-1.75   | Discriminates moisture content of soil and vegetation; penetrates thin clouds                     |
| Band 6 - Thermal Infrared                 | 10.40-12.50 | Thermal mapping and estimated soil moisture                                                       |
| Band 7 - Short-wave<br>Infrared           | 2.09-2.35   | Hydrothermally altered rocks associated with mineral deposits                                     |
| Band 8 - Panchromatic<br>(Landsat 7 only) | .5290       | 15 meter resolution, sharper image definition                                                     |

# Spatial versus spectral resolution

**Spatial resolution** = physical size of the pixel (picture element) e.g. 30m, 120m

**Spectral resolution** = band width e.g. 10nm, 20nm

There is a relationship between these: more available energy = finer spatial and spectral resolution (see Landsat TM example) = more precise analysis potential

Visible bands: < 10nm width

Near IR: ~ 15nm

Mid-IR: 20-30nm

Thermal IR: > 2000nm (2 microns) and 120m pixels

Panchromatic: higher spatial resolution due to pooling of visible / NIR reflection (but lower 'spectral' resolution)

The near IR (0.7-1.3 microns) records energy related to vegetation vigour (health), while the mid- IR (1.3-3.0 microns) is (soil) moisture.

Neither have much to do with temperature

normal colour and Mid-IR/NIR/Red composites ->





Mid-IR





# advantages of Infra-Red wavelengths: contrast

# **Spectral Reflectance Curves**



# SOLAR SPECTRUM



## Thermal Infrared (3-15 microns)

This records longer wavelengths (shown in orange) and a measure of temperature as it is emitted <u>NOT</u> reflected IR - Works day / night



#### Prince George Landsat 5 Band 6 - thermal-IR



**'Brightness temperature' – related to surface thermal qualities** 

# Microwave: 1mm - 1 metre wavelength

These wavelengths beyond the infra-red can 'see through' clouds, light rain, and snow, but there is a low amount of it ... why we use these wavelengths for communications



As wavelength increases, so does atmospheric penetration ....

Gamma rays: most don't reach earth

Table: penetration by energy wavelengths

| Ultra-violet      | Cannot get through glass                 |
|-------------------|------------------------------------------|
| Visible           | Can penetrate through glass              |
| Infra-Red         | Penetrates through haze                  |
| Thermal Infra-Red | Penetrates through smoke                 |
| Microwave         | Gets through clouds, snow, and even sand |

# Summary

Remote Sensing activity is classified into three groups based on the wavelengths used, and type/source of data:

1. Visible and Near/Mid Infrared (reflected) = 'optical'

2. Thermal Infrared (emitted from earth)

3. Microwave (= cloud-free ... includes Radar)