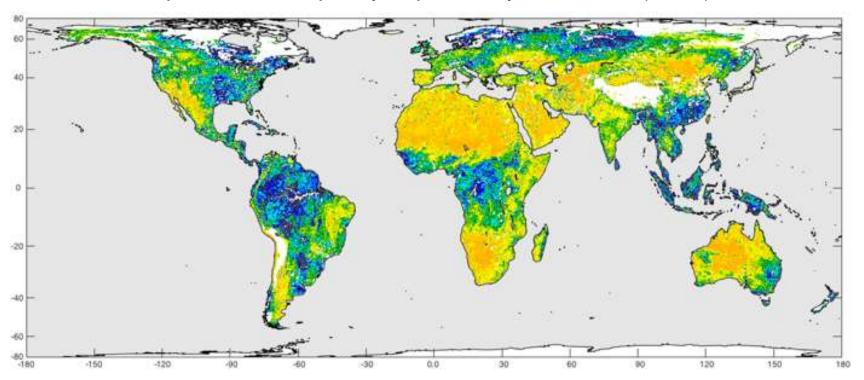

Low and medium resolution imagery

Low/medium res. imagery

- Affordable, accessible
- Large ground coverage
- Decades of historical imagery
- Low level of detail

High Res. Imagery

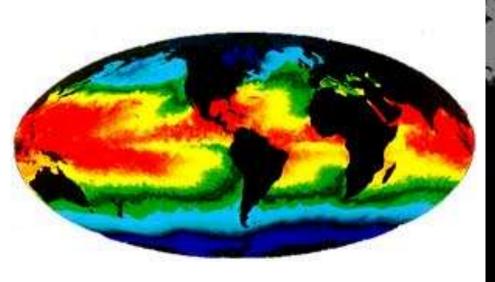

- High level of detail
- On demand coverage
- Expensive, inaccessible
- Small ground coverage

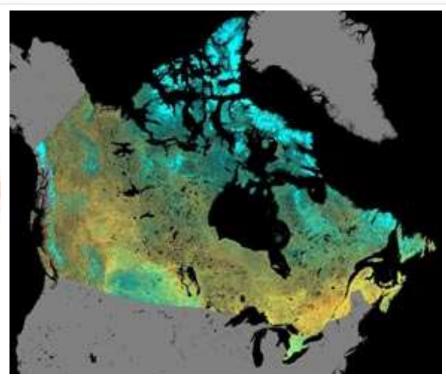
Soil Moisture Active Passive (SMAP) mission, 2015

Active: RADAR; Passive Microwave : Radiometer (9km)

SMAP is designed to measure soil moisture, every 2-3 days.

RADAR portion failed quickly, replaced by Sentinel-1 (radar)




Retrieved soil moisture based on the SMAP "active" and "passive" radiometer data. SMAP Active-Passive Soil Moisture Product (9 km). Three Days Composite May 21-23, 2015

Advanced Very High Resolution Radiometer (AVHRR), 1978->

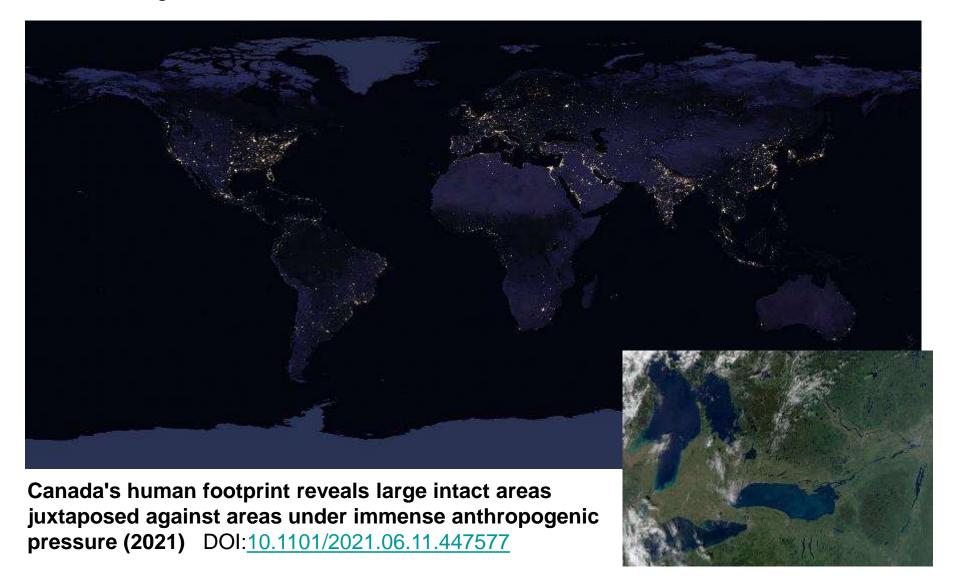
NOAA AVHRR Bands

Band	Wavelength Range (µm)	Spatial Resolution	Application
1	0.58 - 0.68 (red)	1.1 km	cloud, snow, and ice monitoring
2	0.725 - 1.1 (near IR)	1.1 km	water, vegetation, and agriculture surveys
3	3.55 -3.93 (mid IR)	1.1 km	sea surface temperature, volcanoes, and forest fire activity
4	10.3 - 11.3 (thermal IR)	1.1 km	sea surface temperature, soil moisture
5	11.5 - 12.5 (thermal IR)	1.1 km	sea surface temperature, soil moisture

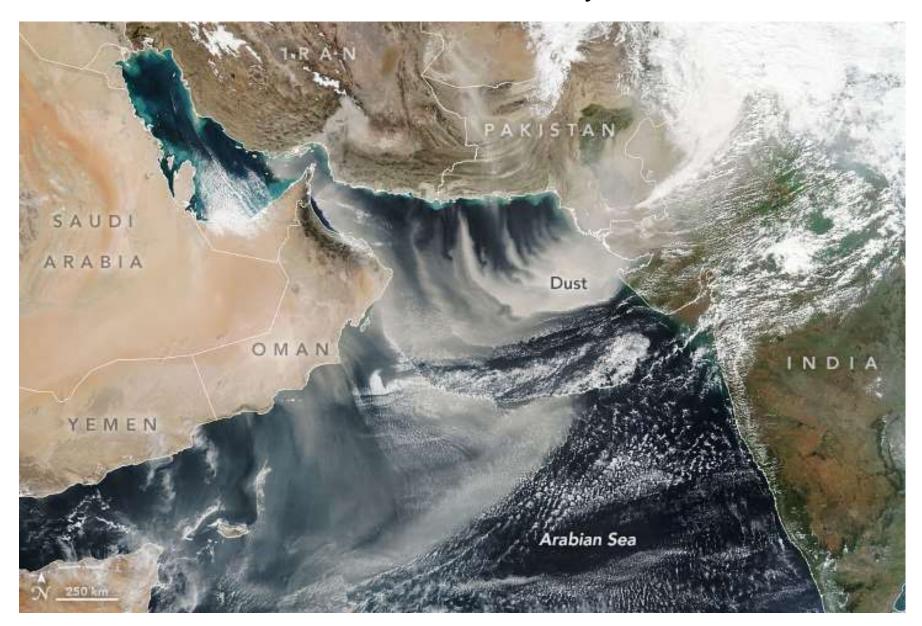
NOAA satellites: Advanced Very High Resolution Radiometer (AVHRR) 'High resolution' refers to temporal coverage not spatial size (1.1km)

NOAA-1	1970-71	NOAA-2 1972-75	These carried the VHRR
NOAA-3	1973-76	NOAA-4 1974-78	mostly experimental for weather
NIO A A 5	1076 70		

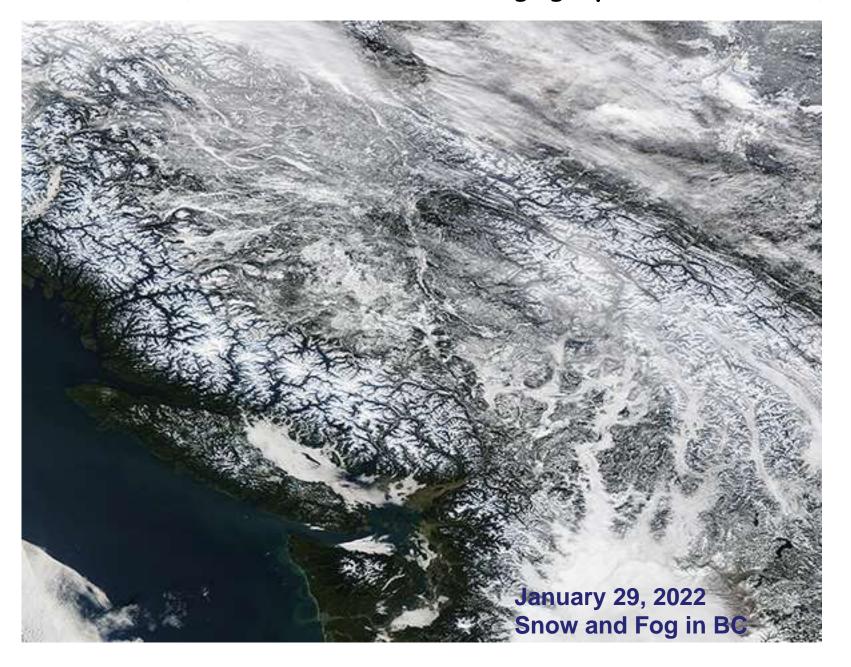
NOAA-5 1976-79


TIROS: Television Infrared Observation Satellites (since 1960)

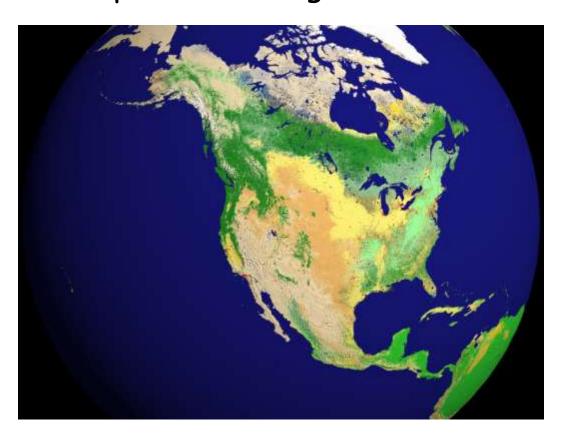
	Equator Ci			
Satellite	Ascending	Descending	Service	
TIROS-N	1500	0300	10/19/78 - 01/30/80	
NOAA-6	1930	0730	06/27/79 - 11/16/86	
NOAA-7	1430	0230	08/24/81 - 06/07/86	
NOAA-8	1930	0730	05/03/83 - 10/31/85	
NOAA-9	1420	0220	02/25/85 - Present	
NOAA-10	1930	0730	11/17/86 - Present	
NOAA-11	1340	0140	11/08/88 - 09/13/94	
NOAA-12	1930	0730	05/14/91 - stand by	
NOAA-14	1340	0140	12/30/94 - Present	
NOAA-15	1930	0730	05/13/98 - Present	
NOAA-16	1400	0200	21/09/00 - Present	
NOAA-17	2200	1000	24/06/02 - Present	
NOAA-18	1400	0200	20/05/05 - Present	
NOAA-19	1400		2009->	


NOAA-19 1400 2009-> NOAA-20 **VIIRS (SUOMI)** 2017 ->

Visible Infrared Imaging Radiometer Suite (VIIRS)


22 bands (superspectral) – 16 have 750m resolution, Blue->Thermal Higher resolution than AVHRR, modelled on MODIS

Dust Storm VIIRS, January 22, 2022


MODIS (Moderate-resolution Imaging Spectroradiometer)

Launched by NASA in Dec. 1999 on the <u>Terra</u> (EOS AM) satellite, and in May 2002 on the <u>Aqua</u> (EOS PM) satellite.

Designed to combine some characteristics of AVHRR (1978->) and Landsat TM (1982->) plus atmospheric /cloud parameters

It is the predominant global medium scale sensor

MODIS (Moderate-resolution Imaging Spectroradiometer)

- >36 spectral bands range in wavelength: 0.4 to 14.4 μ m
- >spatial resolutions: 250m to 1km
- >Terra: 10.30am descending
- > Aqua: 1.30pm ascending
- >Swath: 2330 km; Earth covered in 1-2 days
- ➤ Data: 12-bit; design life 6 years (going on 22 ...)

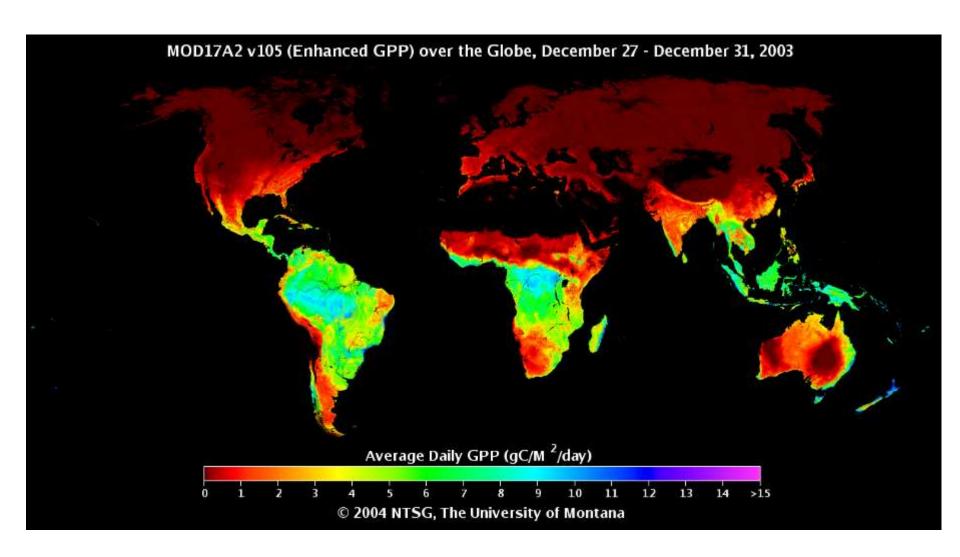
MODIS superspectral bands, wavelengths

		Emissive Bands	
Aggregrated 250 m	Aggregrated 500 m	1 km	1 km
Band 1 (620-670 nm)	Band 3 (459-479 nm)	Band 8 (405-420 nm)	Band 20 (3.660-3.840 µm)
Band 2 (841-876 nm)	Band 4 (545-565 nm)	Band 9 (438-448 nm)	Band 21 (3.929-3.989 µm)
	Band 5 (1230-1250 nm)	Band 10 (483-493 nm)	Band 22 (3.939-3.989 µm)
	Band 6 (1628-1652 nm)	Band 11 (526-536 nm)	Band 23 (4.020-4.080 µm)
	Band 7 (2105-2155 nm)	Band 12 (546-556 nm)	Band 24 (4.433-4.498 µm)
		Band 13L (662-672 nm)	Band 25 (4.482-4.549 µm)
		Band 13H (662-672 nm)	Band 27 (6.535-6.895 µm)
		Band 14L (673-683 nm)	Band 28 (7.175-7.475 µm)
		Band 14H (673-683 nm)	Band 29 (8.400-8.700 µm)
		Band 15 (743-753 nm)	Band 30 (9.580-9.880 µm)
		Band 16 (862-877 nm)	Band 31 (10.780-11.280 µm)
		Band 17 (890-920 nm)	Band 32 (11.770-12.270 µm)
		Band 18 (931-941 nm)	Band 33 (13.185-13.485 μm)
		Band 19 (915-965 nm)	Band 34 (13.485-13.785 μm)
		Band 26 (1.360-1.390 μm)	Band 35 (13.785-14.085 μm)
			Band 36 (14.085-14.385 μm)

MODIS BANDS and their PRINCIPAL AREAS OF APPLICATION

Primary Use	Band	Bandwidth (nm)	Central Wavelength (nm)	Pixel Size (m)
Land/Cloud /Aerosols	1	620 - 670	645.5	250
Boundaries	2	841 - 876	856.5	250
Land/Cloud	3	459 - 479	465.6	500
/Aerosols	4	545 - 565	553.6	500
Properties	5	1230 - 1250	1241.6	500
	6	1628 - 1652	1629.1	500
	7	2105 - 2155	2114.1	500
Ocean Color/	8	405 - 420	411.3	1000
Phytoplankton/	9	438 - 448	442.0	1000
Biogeochemistry	10	483 - 493	486.9	1000
	11	526 - 536	529.6	1000
	12	546 - 556	546.8	1000
	13	662 - 672	665.5	1000
	14	673 - 683	676.8	1000
	15	743 - 753	746.4	1000
	16	862 - 877	866.2	1000
Atmospheric	17	890 - 920	904.0	1000
Water Vapor	18	931 - 941	935.5	1000
	19	915 - 965	935.2	1000

Surface/Cloud Temperature	20	3.660 - 3.840	3.785	1000
remperature	21	3.930 - 3.989	3.960	1000
	22*	3.930 - 3.989	3.960	1000
	23	4.020 - 4.080	4.056	1000
Atmospheric Temperature	24	4.433 - 4.498	4.472	1000
remperature	25	4.482 - 4.549	4.545	1000
Cirrus Clouds	26	1.360 - 1.390	1.383	1000
Water Vapor	27	6.535 - 6.895	6.752	1000
	28	7.175 - 7.475	7.334	1000
Cloud Properties	29	8.400 - 8.700	8.518	1000
Ozone	30	9.580 - 9.880	9.737	1000
Surface/Cloud Temperature	31	10.780 - 11.280	11.017	1000
remperature	32	11.770 - 12.270	12.032	1000
Cloud Top Altitude	33	13.185 - 13.485	13.359	1000
uue	34	13.485 - 13.785	13.675	1000
	35	13.785 - 14.085	13.907	1000
	36	14.085 - 14.385	14.192	1000


The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. 1998. *IEEE Transactions on Geoscience and Remote Sensing*, *36*(4), 1228-1249. https://doi.org/10.1109/36.701075

MODIS SPECIAL THEMES

MODIS Team Member	MODIS Product
E. Vermote	Surface Reflectance
Z. Wan	Land Surface Temperature
A. Strahler/JP. Muller	BRDF/Albedo
A. R. Huete/C. O. Justice	Vegetation Indexes
R. B. Myneni/S. W. Running	LAI/FPAR 1
C. O. Justice/Y. J. Kaufman	Fires/Burned Area
D. Hall	Snow/Ice/Sea Ice
J. R. G. Townshend/A. Strahler	Land Cover/Land Cover Change
S. W. Running	PSN/NPP 2

- 1. Leaf Area Index / fraction of photosynthetically active radiation
- 2. Net Photosynthesis/ Net Primary Productivity

GPP: The rate at which light energy is converted to plant biomass ... The sum total of the energy is called gross primary productivity

MODIS Land Products / Research Themes

- Energy Balance Product
 - Surface Reflectance
 - Land Surface Temperature
 - Albedo
 - Snow Cover
- Vegetation Parameters
 - Vegetation Indices
 - LAI/FPAR
 - NPP/PSN

Biology and Biogeochemistry of Ecosystems and Global Carbon Cycle

Global Water Cycle and Energy Balance

- Land Cover Land Use
 - Land Cover
 - Vegetation Continuous Fields
 - Vegetation Cover Change
 - Fire and Burned Area

Land Cover and Land Use Change

Atmospheric Chemistry and Aerosols

+ ABOUT MODIS

+ NEWS

+ DATA

+ IMAGES

+ SCIENCE TEAM

+ RELATED SITES

+ SEARCH

+ MODARCH

DATA

The MODIS Data section contains everything from ATBDs to Product Descriptions to tutorials on ordering MODIS data from the various DAACs. Peruse the Data section today.

NEWS

The MODIS news section details all the developing news surrounding the MODIS project.

MODIS Atmosphere Team Releases New Data Products Calendar

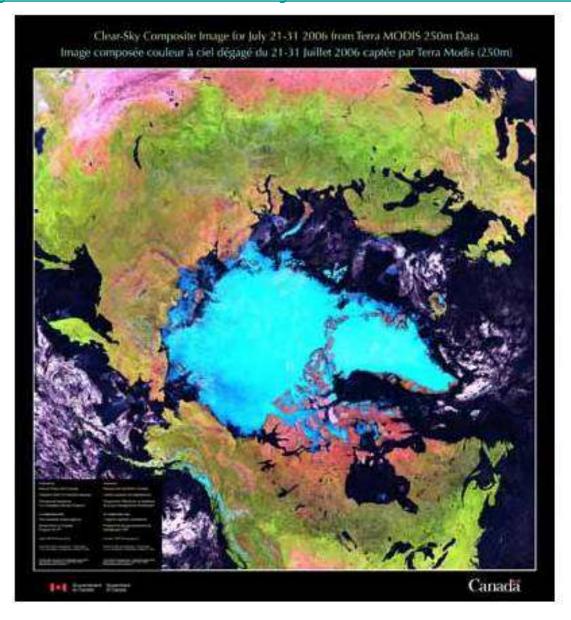
IMAGES

Dust in Central Africa

This image of dust over central Africa was captured by the MODIS on the Terra satellite on February 11, 2009. Shown are Niger (upper left half of image), Chad (right side), Nigeria (lower left), Cameroon (bottom center), and the...

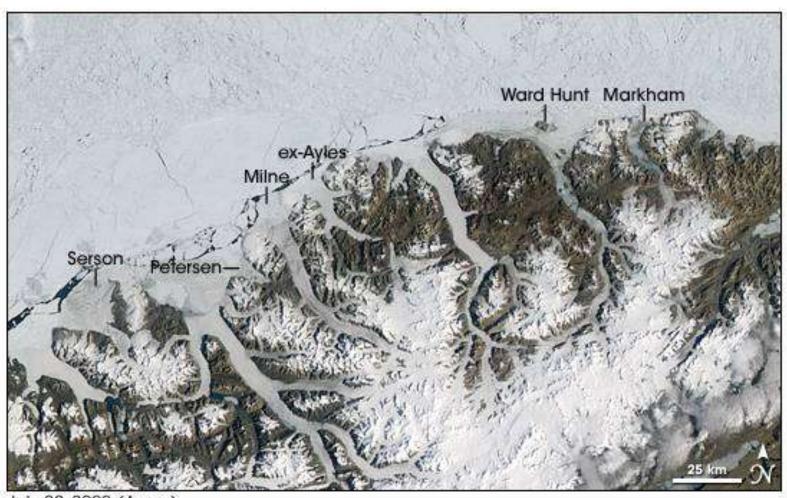
http://modis.gsfc.nasa.gov/

DISCIPLINES


MODIS: available data

Product	Acronym	Spatial Resolution	Temporal Frequency	Terra V005 SIN	Aqua V005 SIN	Terra/Aqua Combined V005 SIN
Surface Reflectance	SREF	500 m	8 day composites	MOD09A1	MYD09A1	
Land Surface Temperature and Emissivity	TEMP	1 km	8 day composites	MOD11A2	MYD11A2	
Land Cover	LC	500m	annual			MCD12Q1
Normalized Difference Vegetation Index and Enhanced Vegetation Index	NDVI EVI	250 m	16 day composites	MOD13Q1	MYD13Q1	
Leaf Area Index and Fraction of Photosynthetically Absorbed Radiation	LAI FPAR	1 km	8 day composites	MOD15A2	MYD15A2	
Gross Primary Productivity	GPP	1 km	8 day composites	MOD17A2 MOD17A2 51	MYD17A2	
Net Primary Productivity	NPP	1 km	Annual	MOD17A3		
Reflectance Nadir BRDF-Adjusted (NBAR)	NBAR	500 m	16 day composites			MCD43A1
Calculated Albedo		500 m	16 day composites			MCD43A
Reflectance Nadir BRDF-Adjusted (NBAR)	NBAR	500 m	16 day composites			MCD43A4
MODIS/Terra+Aqua BRDF/Model Quality		500 m	16 day composites			MCD43A2

https://earthdata.nasa.gov/http%3A/earthdata.nasa.gov/about-eosdis/system-description/lance/modaps/about-modaps/data-products

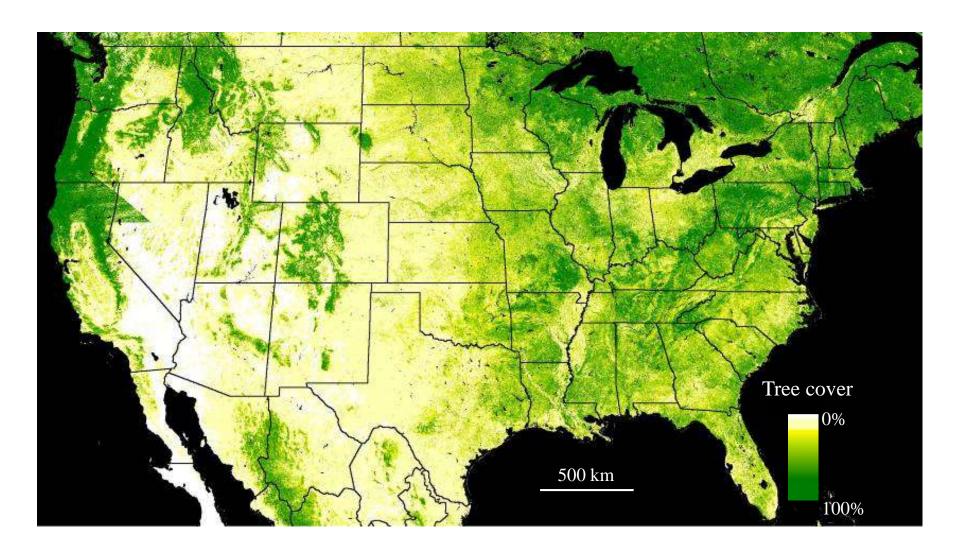

CCRS produced the first-ever, high-medium resolution, circumpolar satellite image by compositing cloud-free images from the MODIS sensor

http://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/land-cover/north-american-landcover/9144

Retreat of the Ellesmere Island Ice shelf

http://earthobservatory.nasa.gov/Features/Ellesmere

July 22, 2008 (Aqua)

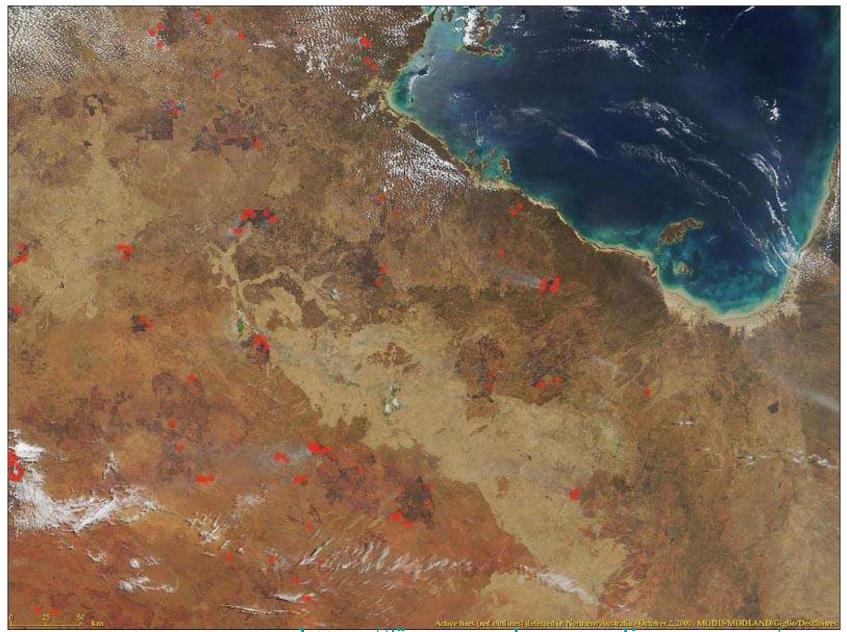

Land cover

http://earthobservatory.nasa.gov/Newsroom/view.php?id=22585

Vegetation - see also http://glcf.umd.edu/data/modis/index.shtml

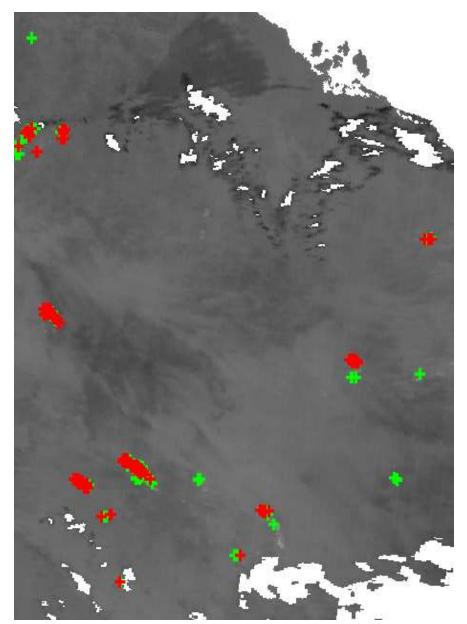
Percent tree cover map of the U. S. from 250 meter MODIS data using maximum NDVI composite for summer 2000 acquisitions

32 day composite: bands 1-7, 700mb (August):



http://glcf.umd.edu/data/modis/index.shtml

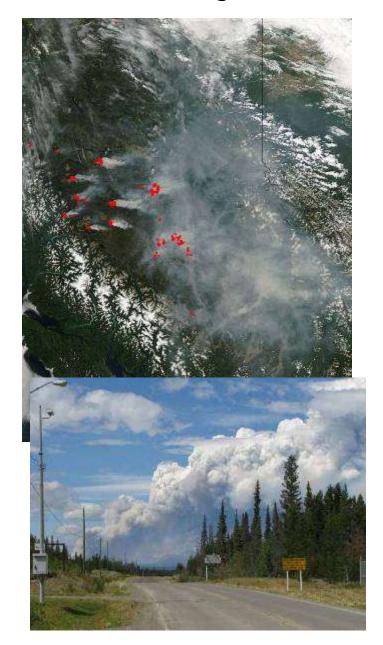
Feb-March

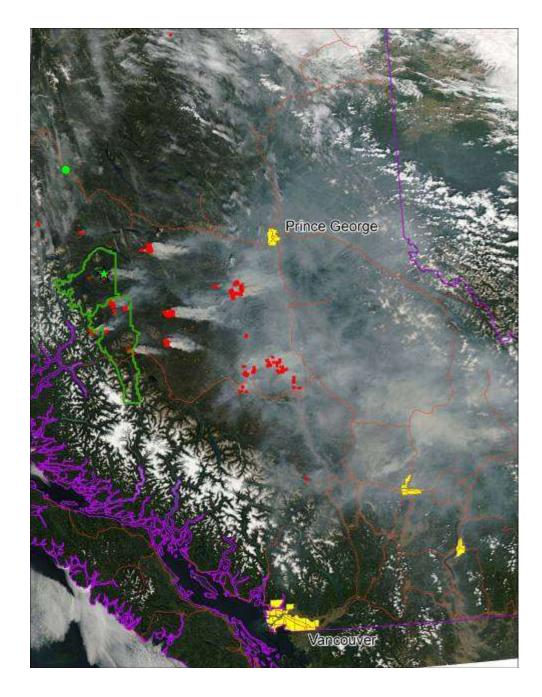

MODIS Fires, NW Australia, Oct 2, 2000

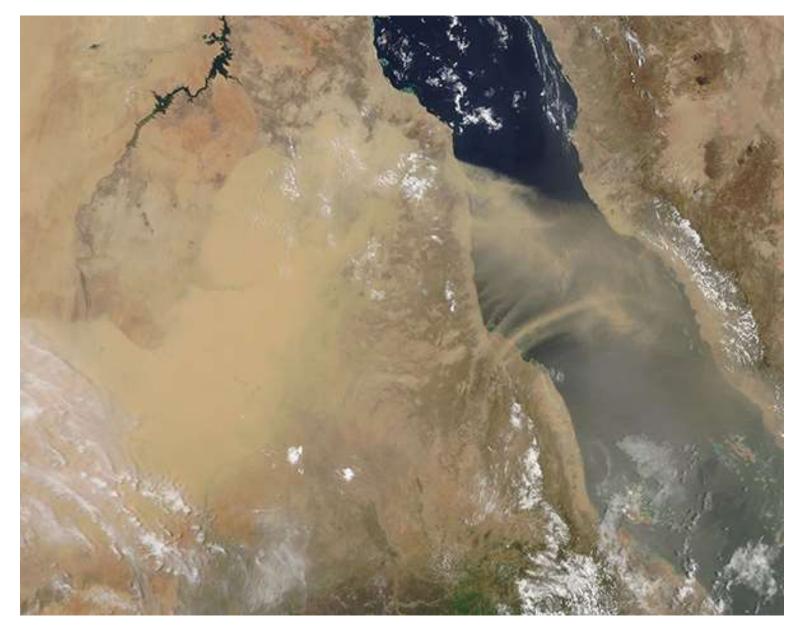
https://firms.modaps.eosdis.nasa.gov/map

AVHRR (3.45am)

MODIS (10.30am)

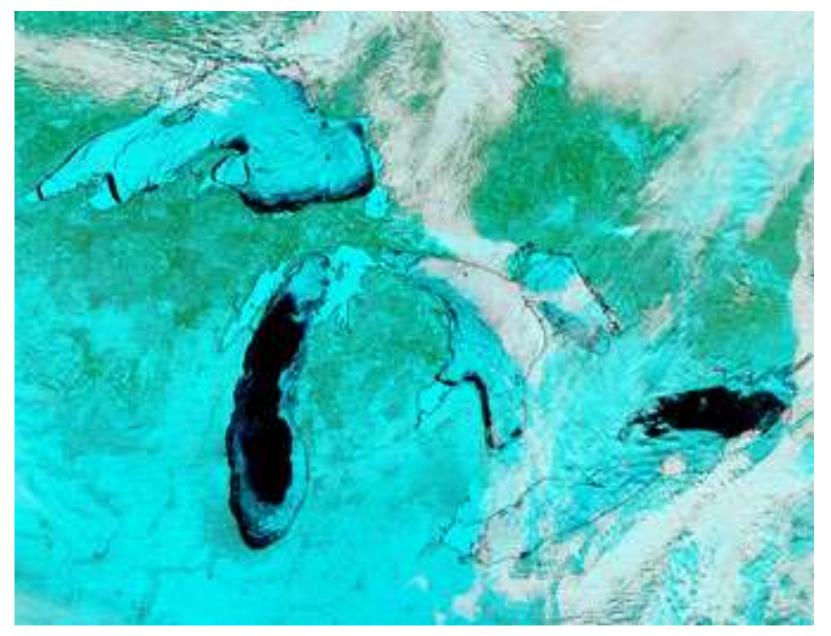


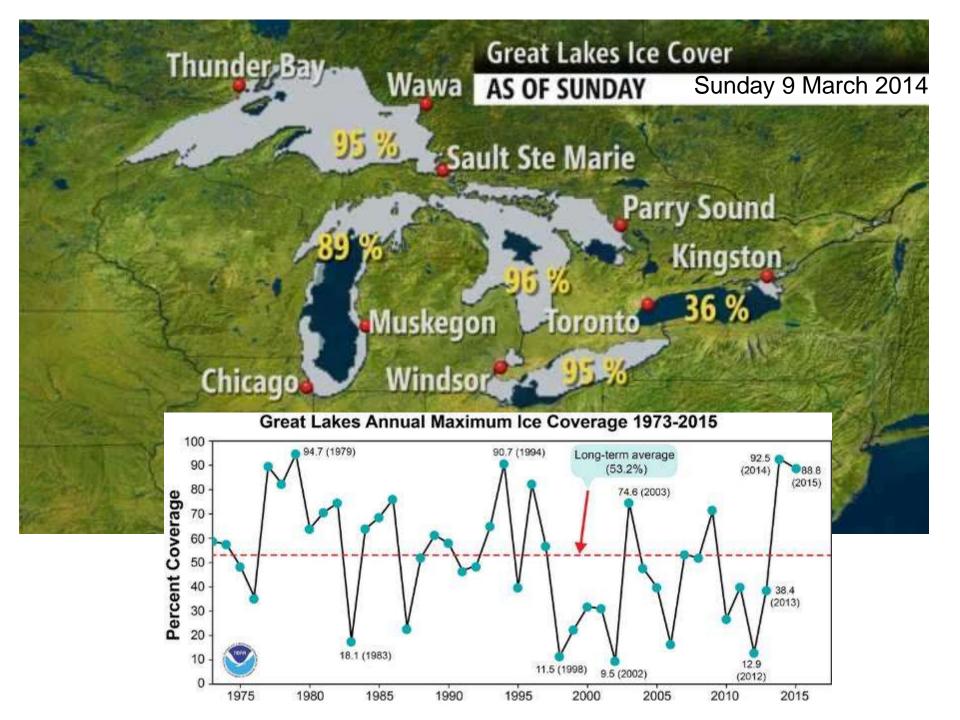



MODLAND/Justice et al

Oct 2, 2000

BC fires, August 2010





August 12, 2017, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite acquired a true-color image of a massive dust storm over Sudan.

Great Lakes: Feb 29 2014: record ice cover ? – 92.5%

MODIS - snow cover - volume estimate / runoff

MODIS Urban applications

Hangzhou

MODIS themes for next Monday's class talks
3 minutes each as for the High Res.Talks
request/suggest your topic this week
send to me by Sunday evening - ppt?

4 Slides: background- importance - bands used; examples and special websites / application references

Land	Ocean
Fire detection / areas burned	Oil spills
NDVI / vegetation	Pollution
Land cover / change – urban/rural	Sea surface temperatures
Vulcanology	Ocean colour - bacteria
LAI / Evapotranspiration	
Land surface temperature	Atmosphere
GPP / NPP	Ozone layer - aerosols
	Pollution
Cryosphere	Dust storms
Snow cover	Water vapour
Lake ice / sea ice	
Glacier albedo	Other

https://modis.gsfc.nasa.gov/data/dataprod

MODIS and applications in harmful algal blooms (HABs)

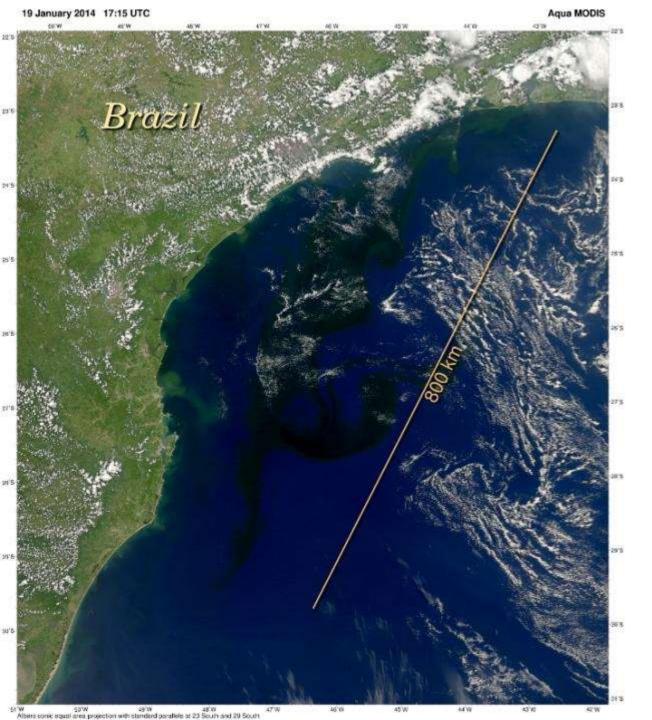
Sample class talk from a previous year

- Algal blooms can be bad:
 Some contain toxins
 Decreases dissolved oxygen potentially killing aquatic species
- Can be caused by increased concentrations of nitrogen and phosphorus
- Bands typically used: visible, NIR and SWIR
 Cui: used red (620-670nm), NIR (841-876nm)
 Hu: used red, NIR, SWIR


The Oyashio algal bloom off the coast of Japan

(http://oceancolor.gsfc.nasa.gov/FEATURE/IMAGE S/A2009141033700.OyashioKuroshio.quarter.jpg)

- Algal bloom in the Yellow Sea shown in Natural colour (above) and false colour (below)
- False colour makes algae show up better due to high reflection in NIR bands (just like plants)
- Algal blooms are widely studied due to impact on humans and animals



Natural Color

False Color (Shortwave, Near-Infrared, and Red)

- NDVI is also used (Cui's paper)
- Develop a FAI:
 Floating Algal Index
 (Hu's paper) to
 quantity algal blooms

Algal bloom stretching 800km off the coast of Brazil (Jan. 2014)

http://oceancolor.gsfc.nas a.gov/FEATURE/Brazil_pl ume.html

Websites:

- Algal blooms: http://www.sciencedaily.com/articles/a/algal_bloom.htm
- MODIS: http://modis.gsfc.nasa.gov/

Scientific Papers:

- Cui, T. et al. "Satellite monitoring of massive green macroalgae bloom (GMB):," International Journal of Remote Sensing 33(10), Sept. 2012, pp. 5513 – 5527.
- Hu, C. "A novel colour ocean index to detect floating algae in global oceans," Remote Sensing of Environment 113, 2009, pp. 2118 – 2129.
- Siswanto, E et al. "Detection of harmful algal blooms of *Karenia mikimotoi* using MODIS measurements: A case study of Seto-Inland Sea, Japan," *Remote Sensing of Environment* **129**, 2013, pp. 185 196.