Classes at UNBC: Winter 2022 (GEOG205)

What's happening next week / after ?

Labs 'face to face' in 8-125 – BYO mask

Lectures: next week – still virtual

rest of January: unsure, maybe hybrid ?

rest of semester: unsure, stay tuned

➢Most disciplines use maps /geomatics

≻Maps help you see the world

>Mapping is a practical skill for jobs

► Map creation is ever increasing

>The Power of Maps (graphics)

>

– see example next slide

http://bombsight.org

Cartography and Geomatics

• Cartography: The art, science and technology of making <u>maps</u>

• Geomatics: An umbrella term for the <u>mapping</u> technologies

- Map: A scaled representation of a planetary surface - usually two-dimensional ('traditional' definition)
 - includes printed maps, online displays, animations

Cartography versus GIS in the 'Geomatics' umbrella

Cartography

Input -> map design -> Output

GIS

Input -> Database -> <u>Analysis</u> -> Output

Map Basics lecture - summary

- The nature of mapping
- Maps and data layers
- Types of maps (/ data)
- Uses of maps (/ data)
- Map Scales

The nature of mapping:

1a. Mapping is never finished (especially here)

1b. There are multiple types of map products for the same area

2. Maps and data layers

Maps and datasets are composed of layers or themes – 'feature' types are organised in **layers** e.g. roads, rivers etc.. **There are three (<u>vector</u>) types: points, lines** and **areas** (polygons-GIS)

Raster (grid) layers

In addition to the 3 'feature' types, there are continuous grids (rasters) e.g. for air photos, images, relief models

3. Types of Maps and data

Figure 1. Geomatics (After Konecny, 2002)

KONECNY, G. (2002). Recent Global Changes in Geomatics Education, Proceedings of 22nd FIG Congress 2002, Washington, D.C.

a. General purpose (topographic) - 'base layers'

These show the visible features of the landscape e.g. relief, water, and roads - base maps, relief maps, city maps (and nautical charts)

b. Special purpose (thematic) Emphasis is placed on a particular element

e.g. climate, geology, population density, industry.

Global coffee consumption

Canada: #12

http://www.theguardian.com/news/datablog/interactive/2011/dec/01/world-corruption-index-transparency-international-map

4. Purpose of Maps / spatial data

A. Display and store of spatial information (space)

4. Purpose of Maps & Spatial data

B. Historical record of spatial features (time)

Purpose of Maps & Spatial data

- A. Display and store of spatial information
- B. Historical record of spatial features

Kakwa Park, BC 1920

2010 (Google maps)

Purpose of maps: C. Communication tool

What is the red line at ~ $46^{\circ}N$?

General Uses of Maps & Spatial data

C: Communication tool e.g. propaganda

German map, world war II

Image screen captured from Route Flyover Ad at duration point 0:39:

Map image implies supertanker safety (by omitting islands) accidentally or not

Critical Cartography .. differs from academic **cartography** in that it links geographic knowledge with political power.

Image above adjusted to include representations of the islands that lie within the waterway (islands added by Lori Waters)

Communication propaganda: Promoting BC during the Gold Rush, 1858

D. Maps as works of art

http://www.antonthomasart.co

https://www.youtube.com/watch?v=B20WKWnDmRQ https://www.youtube.com/watch?v=4HpmWkBCFOE

Maps as works of art (and functional)

Maps of Whistler Blackcomb, Grouse Mountain and Sun Peaks among James Niehues many paintings.

CBC News - Posted: Mar 31, 2019 6:00 PM PT | Last Updated: March 31, 2019

https://www.outsideonline.com/2376261/man-behind-ski-maps

E. 'Vicarious' travel

5. Map Scales

The concept of scale is fundamental to mapping ...

Scale represents the reduction compared to the distances on the earth's surface.

Without a scale, it is more a 'diagram', (not a map)

Scale can be given in 3 ways:

a. <u>Verbal statement</u>

- For example, 1 cm to 10 km, 1 inch to 1 mile
- Verbal statements are simple to understand
- They are 'unit-dependent'

<u>b.</u> Ratio or 'representative fraction (RF)'

• This states the reduction as a ratio of fraction e.g. 1:100,000 or 1/100,000

- It is free of specific units (metric or imperial)
- It can describe map series and datasets e.g. 1:50,000
- 1:20,000 is a <u>larger</u> scale than 1:50,000 (reduced less) (1/20,000 <u>IS</u> a bigger fraction than 1/50,000)

c. Scale bar

- Graphic, units are stated e.g. kilometres or miles
- Scale bar adapts in size with zoom to match display

common world scales / map series / data 1:1,000,000 (world) Small 1:500,000

1:250,000 (federal/provincial) Medium (1:125,000)

1:50,000 (federal) 1:20,000 (provincial)

Large

>1:10,000 (municipal)

Cadastral (civic)

Conversion between a ratio and a statement To convert 1:250,000 to be a statement: 1 cm to 250,000 cm = 2500m = 2.5 km

Scale is <u>1 cm to 2.5 km</u>

In reverse: Get each side of the scale into the same units, for example:

- To convert 1 cm to 1 km into a ratio:
- 1 km = 1000m = 100,000 cm
- So 1cm to 1km is the same as 1:100,000

common world scales / imperial series Canada converted to metric post world war II

1: 506,880 1" = 8 miles -> 1:500,000 1cm:5km

1: 253,440 1" = 4 miles -> 1:250,000 1cm:2.5km ------1: 63,360 1" = 1 mile -> 1:50,000 1cm:0.5km

1 mile = 1760 yards = 5280 feet = 63,360 inches

The world is metric except for Liberia, Myanmar and USA

Photo by Reinder Storm, map librarian, University of Amsterdam 'Beer and maps'