GEOG 204

LECTURE 9

Data For Decision Support

- This was a cardinal objective in the development of GIS
 - Computers are effective at processing large amounts of data
 - GIS is of often part of the decision making process
- Effective use of data and GIS functionalities is essential
 - GIS allows spatial data to be misused and functionalities misapplied. Caution is essential.

Data For Decision Support

- Consider the case of emergency management decisions. Data for
 - Preparedness
 - Transportation
 - First responders and services
 - Communications
 - Vulnerabilities
 - Flood plains
 - Landslide susceptibility
 - Mitigation

How can these data be misused?

How can related functions be misapplied?

3

4

Presentation Title

Data For Decision Support

Spatial Data

- Vector data
- Raster data

Information

- A representation of the data
- Processed Data
- E.g. A map, a graph

Presentation Title

Knowledge

- Useful information
- Comes from:
 - comprehension of information
 - experience
- Represents understanding and insights
- Learned
- E.g. Wetlands hold sensitive ecosystems

5

6

5

Data For Decision Support

- The process of GIS-based decision making
 - 1. The question, problem, objective
 - 2. Data acquisition, exploration, preparation
 - 3. Analysis methods and functions
 - 4. Results and refinements
 - 5. Presentation
 - 6. Information and knowledge synthesis
 - 7. Decision making and knowledge accumulation
- How does this compare with your experience?

Data preparation and integration

Exploration

- Examine the metadata.
 - Spatial resolution, accuracy, coordinate system, when the data was collected and by whom, data use constraints, and other important information.
- Examine all the layer for alignment, scale, extent
- Explore and understand the attributes for each layer and records noting outliers and missing data

Preparation

- Sample tasks
 - Projecting data
 - Spatial extent
 - Creating and cleaning up attributes
 - Interoperability

Integration

- Assembly of datasets
- Vector, Raster, Tabular
- Ascertain output formats

7

8

Presentation Title

Spatial analysis

- Methods are problem dependent
- Understand the goal/question/problem
- Factors/causes/drivers that explain the problem
- Example:
 - Problem Ideal place for a housing development?
 - Factors –land cover, relative slope, distance to existing roads and streams, and soil composition
 - Methods overlay analysis

Presentation Title

Geospatial Outputs for decision making

- Decisions are made by people
 - Based on information/insights provided and accumulated knowledge
- Often, GIS analysts will only present the outputs
- The form of the outputs should satisfy the objective and user needs

Presentation Title

Geospatial visualization

- Some techniques for the visualisation of geospatial information
 - 2D plots
 - 3D plots
 - 3D planimetric views
 - 3D perspective views
 - Animations

Lo and Yeung, 2007. Concepts and Techniques in Geographic Information Systems. Prentice Hall ${\rm c}$

Kang-tsung Chang, 2012. Introduction to Geographic Information Systems. McGraw Hill, New York

<section-header><section-header><text>

http://usmigrationflowmapper.com/

17

18

Geospatial visualization

- 3D planimetric view
 - Shaded relief assumes a theoretical viewpoint directly above the earth
 - 3D planimetric relief shows landforms "standing up" in partial profile.
 - It closely resembles how mountains appear to humans on the surface of earth

Geovisualization

http://caris.com/products/hips-sips/

Geovisualization

Cartograms

- Cartograms are maps that lack planimetric correctness, and distort area for to display some specific attribute
 - To reveal patterns that might not be readily apparent on conventional map
 - To promote legibility
- The geometry of the spatial object, in terms of areal extent, location, and topology is subservient to the attribute of interest

https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/how-to-build-a-cartogram-in-microsoft-office-and-arcgis-online/

Geospatial visualization

• 3D Animation

21

Geospatial visualization Animation

https://svs.gsfc.nasa.gov/30009

22

Geospatial visualization

Patel, A., Crooks, A.T. and Koizumi, N. (2018).