GEOG 357

LECTURE 12

Change Detection

- Identifying differences in state by comparison .
- Applied to changes at two or more times.
- The primary sources of data are satellite imagery and aerial photos

Before and after aerial photographs -

Brisbane Floods, Australia, January 2011

http://www.abc.net.au/news/specials/qld-floods/

Change detection

Using repeat images from different time periods

a.View side by side and/or with slider

b.In sequence (animation)

c. Digitise features /overlay

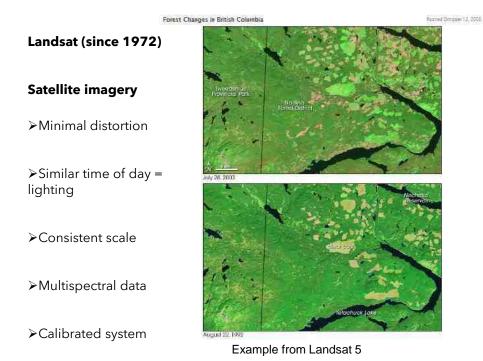
d. Use digital analysis algorithms

Google Earth Time Lapse 1984-2016 33 years of Landsat images; 55,000 images - 1 petabytes of data

https://earthengine.google.com/timelapse/

Note: mountain areas comparison are less effective due to seasonal snow

Ft. MacMurray: https://www.second.com/


Digitised features: Eyjabakkajökull, Iceland

Generated from maps, digital vectors, or image processing - all initially remote sensing

Image sequences for change detection

Ground photos/balloons	1850 ->
Air photos	1920 ->
Landsat MSS (80m)	1972 -> 1992 -> 2012
Landsat TM (->ETM+ / OLI)	1984 → 2002-> 2020
AVHRR (1km) NDVI	1979 ->
High resolution (1 m)	2000 ->

Ground photos: <u>http://explore.mountainlegacy.ca/captures/4338/comparisons</u>

Change monitoring Considerations 1

Timing (day/year)

Time of <u>day</u> affects horizontal sun angle (azimuth) ... consistent with Landsat and other satellites

>Time of <u>year</u> affects vertical sun angle /shadow (zenith)

Seasonal ground cover - vegetation, snow, crops

>Seasonal phenology - can change by ±2 weeks each year

What happens to **Digital Numbers** if sun angle is lower ?? Answer: ?

9

1993- PG map

Issues: time of day and year, shadows, media

UNBC 2006

Change monitoring considerations 2

Frequency / type of Changes

Short term versus long term e.g. lakes, snow, crops, harvesting

> local versus global e.g. retreat of arctic ice, desertification

> gradual versus catastrophic - e.g. soil slip v landslide

>cyclical changes - urban and forest examples (next slide)

Urban development cycle: clearing, subdivision ...landscaping, maturity

Crop / vegetation cycles: seasons/phases: clearing, planting, growth, maturity, harvest

Change monitoring Considerations 3

Environmental

≻atmospheric conditions

≻soil moisture conditions

recent weather e.g. rain / snow

... these all mean that a change in DN does not = 'real' change ...

Change monitoring considerations 4: resolution

Temporal resolution: Time of day and interval between images

- ▶ Image data should be acquired the Same Time of Day (most satellites)
- > Image data should be collected near <u>Anniversary</u> Dates

Spatial resolution: Pixel size: Good registration is critical

Radiometric Resolution: range of digital numbers - 8 bit v 16 bit

Spectral resolution: Same wavelengths range e.g. Landsat TM IR bands are not the same as L8 OLI or SPOT IR bands

These are important for visual comparisons of RGB composites, but <u>critical</u> for digital analysis methods

Digital algorithms

Digital analysis for change over time can operate on:

Individual bands

> Image channels e.g. Ratios, NDVI, Tassel Cap

>Classified images

1. simultaneous display - RGB

Display the same band from three different dates in RGB.

Date 1: Blue gun

Date 2: Green gun

Date 3: Red gun

Three images, one in each of RGB, no change = gray. (DN1=DN2=DN3)

Increase in reflection = higher DN = e.g. more red (colour scheme could be reversed if suitable)

1. simultaneous display - RGB

Prince George example (band 3):

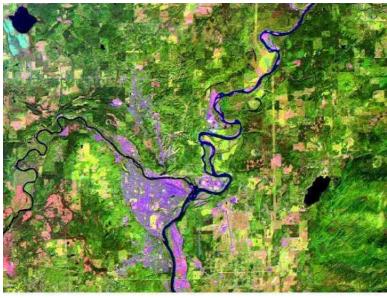
2003 (B) July 22

2004 (G) Aug 9

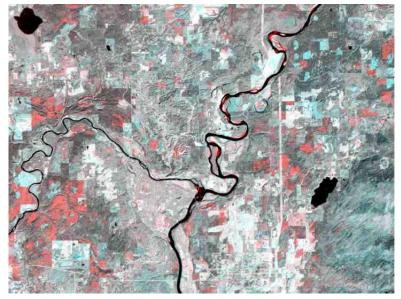
2005 (R) Aug 19

Impact of reflection change

Increase = more red (Areas cleared)


Decrease = blue (regrowth)

No change = grayish


Seasonal: fields, river

2011 Some issues: clouds, cropland / seasonal flux

If only two dates, project one in R, the other in G and B (or 0 in G)

Band 5 (mid-IR), 2011 in red, 1996 in blue/green

Simultaneous display bands 3 for 2000 (red) and 2006 (blue-green) - Dubai

DN response to change will depend on which band is used e.g. visible v Near-IR

Impact of forest clearance on bands

Visible: DN values <u>increase</u> bare ground appears 'brighter' (initially)

NIR: DN values <u>decrease</u>

= less 'healthy' vegetation (initially) but then rebounds

MIR: DN Values increase

= moisture decreases (soil and vegetation)

TIR: depends on time of day and season see thermal lecture - hotter during the day

2. Image algebra - differencing

Subtract DN values (same band) date A - date B

No change = ~ 0 Change = +ve or -ve Evaluate meaning of + versus - (threshold) Output to 8 bit, or 16 bit **signed** channels ? Many reasons for variation (e.g. weather, haze etc..)

Image algebra - differencing

≻Subtract Band (same band) date A - date B

.... or also ratio date A/B

➤But which band(s) to choose ?

≻and what about other changes (e.g. haze adds to DN) - need to normalize (mean / std.dev)

≻There are fewer issues using differences in ratios, indices (normalised) and components e.g. tasseled cap

Mean and standard deviations for DNs in Bowron subscene 1998 and 2009 - These numbers below indicate ability to compare (?) as they are fairly similar especially IR bands

Band	1998	sd	2009	sd
1	52	18	59	27
2	23	11	26	18
3	19	14	23	22
4	53	23	56	25
5	46	26	46	24
6	128	8	133	8
7	18	13	19	12

Impact of forest clearance on tasseled cap - would the DNs increase or decrease ?

≻Brightness ?

≻Greenness ?

≻Wetness ?

►NDVI (or 4/3 ratio)

Change detection and mapping igital methods Example (Tasmania): New plantations mapped by subtracting NDVI 1992-1999

http://gis.unbc.ca/courses/geog432/projects/2006/pulling/index.htm

UNBC Geog432 project:

1992-1997 forest clearance

Fig. 1. Colour composite using bands 3,4 and 5 from Fig. 2. Colour composite using bands 3,4 and 5 from 1997

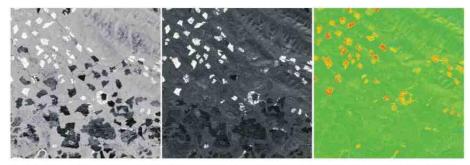
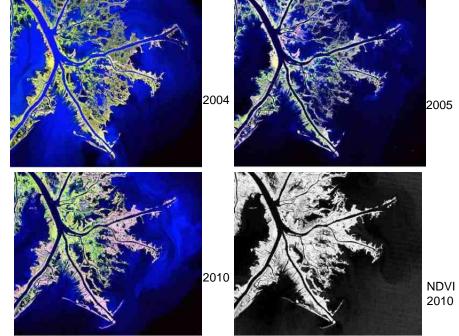
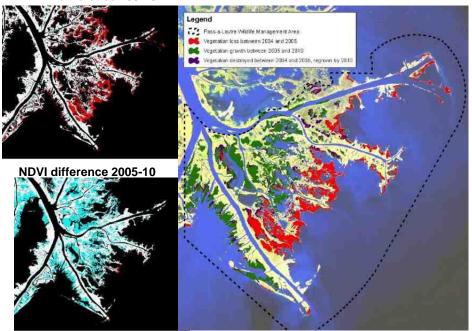
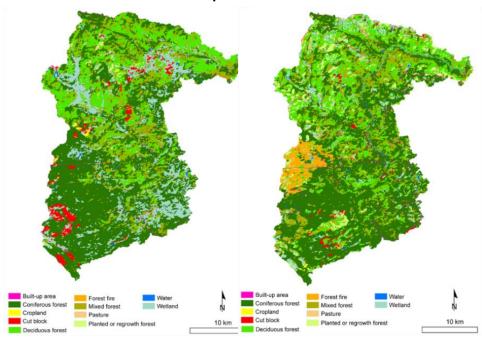




Fig. 3, 4 and 5. Tasseled Cap Wetness subtraction, PC2 and a pseudocolour display of the NDWI image subtraction respectively. Deforested areas are white in figures 3 and 4 and red in figure 5. Black areas were harvested prior to 1992. 1992-97 cutblock size has decreased

Mississippi Delta: TM543: 2004, 2005, 2010 (before/after Hurricane Katrina, Aug 2005)

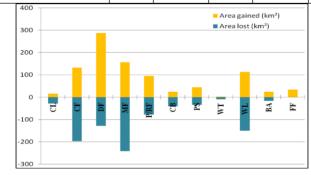
NDVI difference 2004-5

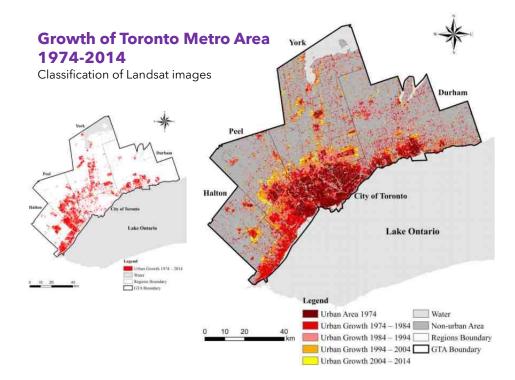
3. Post classification comparison: the 'matrix'


		Water	Cropland	Rangeland	Forest	Total
	Water	2842	3	4	0	2849
	Cropland	1	31874	596	0	32471
me A	Rangeland	2	1063	72487	23	73575
	Forest	0	8742	328	53221	62291
	Total	2845	41682	73415	53244	171186

Two (<u>usually supervised</u>) classifications compared by pixel and cross tabulated: (example from J.Piwowar, U. Regina)

Time B	
--------	--


The matrix multiplies as number of classes increase


Could do a binary tabulation - change / no change - or selected classes only

Recent UNBC M.Sc thesis - supervised classifications 1984 and 2010

	1984		1999		2010	
LULC type	km ²	% of total	km ²	% of total	km ²	% of total
Cropland (CL)	23.27	0.82	31.70	1.12	18.82	0.66
Coniferous forest (CF)	1059.06	37.35	1175.45	41.45	1107.84	39.05
Deciduous forest (DF)	796.65	28.09	660.79	23.30	815.34	28.83
Mixed forest (MF)	351.97	12.41	451.57	15.92	365.88	12.87
Planted or regrowth forest (P/RF)	59.94	2.11	140.08	4.94	157.23	5.53
Cut block (CB)	44.70	1.58	43.46	1.54	26.38	0.93
Pasture (PS)	6.53	0.23	51.63	1.82	60.30	2.12
Water (WT)	21.49	0.76	21.18	0.75	20.48	0.72
Wetland (WL)	454.22	16.02	220.82	7.79	183.30	6.45
Built-up area (BA)	18.17	0.64	39.32	1.39	47.24	1.66
Forest fire (FF)	0.00	0.00	0.00	0.00	33.19	1.17

