GEOG 357

LECTURE 6

Unsupervised classification: review

Characteristics

user needs no 'a priori' knowledge of area (but it helps)

- software clusters pixels by natural DN groupings

(based on similarity and contrast = 'natural breaks')

Steps

determine input bands / channels

determine how many classes / clusters

run classifier : K-means or Isodata

assign names to classes (merge classes if needed)

- calculate accuracy x

Supervised classification

- Process uses samples of known identity to classify pixels of unknown identity
- Samples of known identity are the training areas
 - Sections on the image that can be clearly matched to areas of known identity on the image

Presentation Title

- Typify spectral properties of the categories they represent
- Must be homogeneous in respect to the informational category to be classified.

9/	4/	2	U	ΧХ	

3

Supervised Classification: Advantages

- Control of informational categories tailored to a specific purpose and geographic area.
- Class identity determined through the process of selecting training areas.
- Informational categories directly match selected classes
- Errors in classification can be identified by examining how the training data have been classified by the procedure
 - inaccurate classification of training data indicates problems in the classification or selection of training data
 - correct classification of training data does not always indicate correct classification of other data.

Supervised Classification: Disadvantages

- Imposes a classification structure on the data vs the search for "natural" classes.
 - Classes may not be distinct enough in multidimensional data space.
- Train data are often defined with reference to informational categories and only secondarily with reference to spectral properties.
 - A training area that is "100% forest" may be accurate with respect to the "forest" designation but may still be very diverse with respect to density, age, shadowing, and the like, and therefore form a poor training area.
- If the area to be classified is large, or complex it may not be representative of conditions encountered throughout the image.
- The selection of training data can be a time-consuming, expensive, and tedious undertaking for example when matching training areas on maps and aerial photographs to the image to be classified.
- The possibility of missing unique categories not represented in the training data.

Characteristics:

• User has ' a priori' info: can identify homogenous known areas

• Software groups the pixels according to these 'training areas'

- Steps
- determine input bands / channels
- identify 'training areas' for each class
- Check the statistics for separability
- run classifier minimum distance / maximum likelihood
- Calculate accuracy

Supervised classification

Understanding images for training areas selection Reflection in visible / near IR / midIR

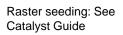
- In a Landsat 4-5 TM 5-4-3 Colour composite
- Visible = Brightness
- Near-IR= vegetation (vigour)
- MIR = dryness -low moisture
- Red = Dry, not much veg.
- Green = Healthy Vegetation
- brighter = deciduous
- Black = low reflection, water
- Purple (Red / Blue) = built-up

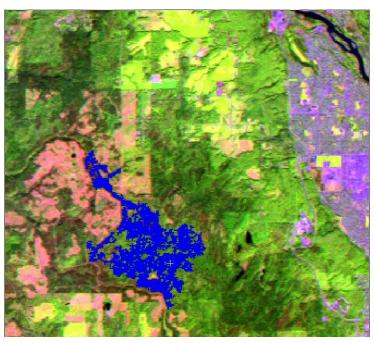
<image>

7

8

Creating training areas - digitizing polygons (in lieu of ground data)





1218	Raste	seeding
m		Z
	Raster Seeding Input Layer Selection criteria: Classification Input	Layers
11/3	Selected layers: pg14sept2011.pix:5.4.3 Output Layer Selected layer: Training areas Properties Input pixel value tolerance: 10 0 11X V Neighborhood : 0 4 Connect 8 Connect	
	≥ ²	Close

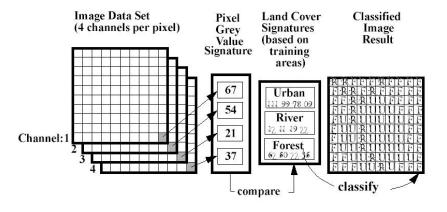
Supervised classification: separability

Create ground training sites for each class type (polygons, now 'seeding')

Create class signatures and check for differences (separability)

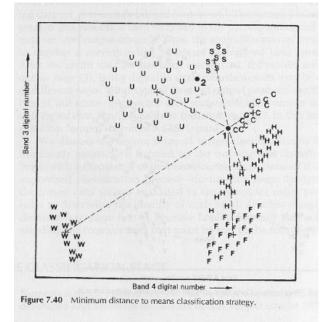
BAND:	1	2	3	4	5	6 (TH)	7	No. of Pixels
Class			1.2 X K K M K J	10000000		13.1.2 4 2		2.2.2.2
1. Seawater	57.4	16.0	12.0	5.6	3.4	112.0	1.5	2433
2. Sediments1	62.2	19.6	13.5	5.6	3.5	112.2	1.6	681
3. Sediments2	69.8	25.3	18.8	6.3	3.5	112.2	1.5	405
4. Bay Sediment	59.6	20.2	16.9	6.0	3.4	111.9	1.6	598
5. Marsh	61.6	22.8	27.2	42.0	37.3	117.9	14.9	861
6. Waves Surf	189.5	88.0	100.9	56.3	22.3	111.9	6.4	1001
7. Sand	90.6	41.8	54.2	43.9	86.3	121.3	52.8	812
8. Urban1	77.9	32.3	39.3	37.5	53.9	123.5	29.6	747
9. Urban2	68.0	27.0	32.7	36.3	52.9	125.7	27.7	2256
10. Sun Slope	75.9	31.7	40.8	43.5	107.2	126.5	51.4	5476
11. Shade Slope	51.8	15.6	13.8	15.6	14.0	109.8	5.6	976
12. Scrublands	66.0	24.8	29.0	27.5	58.4	114.3	29.4	1085
13. Grass	67.9	27.6	32.0	49.9	89.2	117.4	39.3	590
14. Fields	59.9	22.7	22.6	54.5	46.6	115.8	18.3	259
15. Trees	55.8	19.6	20.2	35.7	42.0	108.8	16.6	2048
16. Cleared	73.7	30.5	39.2	37.1	88.4	127.9	45.2	309

http://www.fas.org/irp/imint/docs/rst/Sect1/Sect1_17.html



Per pixel classifiers

13

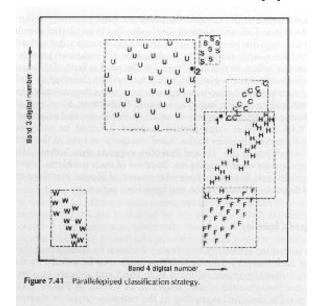


The graphic is 2D

Letters indicate a training pixel

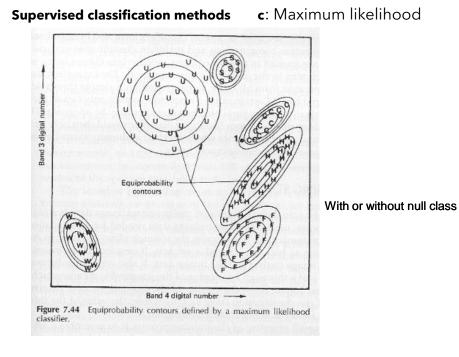
Think in ndimensions:

The screen can only display 3 bands but a classifier can input many more



Supervised classification methods: b: Parallelepiped

Less used due to overlap of training areas - conflict of assigning pixels to classes



Supervised classification: how it works

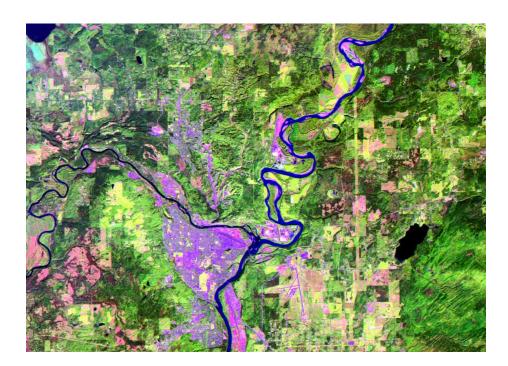
Minimum distance: each pixel is assigned to the class whose mean is closest to data point

(in n-dimensions)

Parallelepiped: Each pixel is assigned to the class whose range it falls in (overlap = double assignment)

Maximum Likelihood: each pixel is assigned to the class for which it has the highest probability.

Max. likelihood can be run with a 'null class' (where some pixels have no assignment to any class)



Merging and adding classes

Merging

a. if classes overlap spatially or b. are not distinguishable spectrally.

Splitting / adding: one class covers too much area [Unsupervised: - run again with more clusters]

Supervised:- create new training class or delete some training areas

Areas are unclassed - create new training class

Post-classification steps

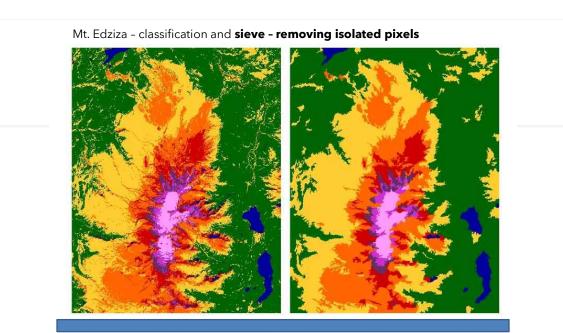
Check the display

> Merge / add classes

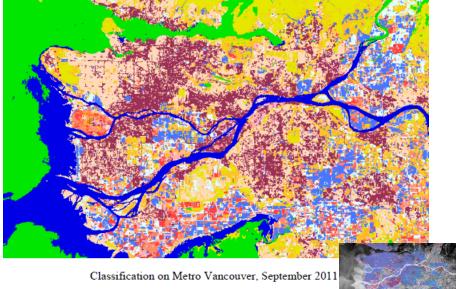
>Sieve ... to remove isolated pixels

>Accuracy assessment

≻Conversion of results to vectors - see lab 7



recognises connectivity of adjacent pixels in the same class
 special classes e.g. wetlands can be specified and preserved
 removes small sub-areas; does not 'blur' edges like filtering



Supervised classification –GEOG432 project

Accuracy assessment

This requires knowing what is reality at some pixels (ground truthing), and how they were classified. This generates a 'confusion matrix'

		Re	ference test				
	Class	Road	Building	Green	Bare	Row total	User's Accuracy
Remote	Road	101	0	25	20	146	69.18%
sensing	Building	0	128	0	17	145	88.28%
classificatio	Green	10	0	104	1	115	90.43%
n	Bare	2	4	2	105	113	92.92%
	Column total	113	132	131	143	519	
	Producer's accuracy	89.38%	96.97%	79.39%	73.43%		
		89.38%	96.97%	79.39%	73.43%		

Overall accuracy = 84.4%, Kappa coefficient: 0.825.

The diagonal represents pixels correctly classified An off diagonal column element = an 'error of omission' An off diagonal row element = 'error of commission'

http://www.gisdevelopment.net/application/nrm/overview/mma09_Mustapha.htm

Measuring accuracy

The overall yardstick of 85% accuracy is held up as a (rarely achieved) ideal. Producer's accuracy: based on ground truth pixels User's accuracy: based on classified pixels Kappa: a composite accuracy index

		Error	(Confusion)	Matrix	Classif	ied				
R	eference	DataDa water	ta ice	snow	conif	decid	alpine	rock	deglac	TOTALS
water ice snow conif decid alpine rock deglac		2 0 0 0 0 0 0 0	0 5 1 0 0 0 0	0 6 0 0 0 0 0	0 0 14 2 0 0 0	0 0 1 4 1 0	0 0 0 0 1 0	0 1 2 0 0 0 4 5	0 0 0 0 0 0 0 3	2 6 9 15 6 2 4 11
Totals		2	7	6	16	7	2	12	3	55
		ic sr cc de al		cer's 100.00 71.42 100.00 87.50 57.14 50.00 33.33 100.00	29% 00% 00% 13% 00% 33%	acy User 100.000% 83.333% 66.667% 93.333% 66.667% 50.000% 100.000% 27.273%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppa 0000 8090 6259 9060 6181 4811 0000 2308		

Classification review

Unsupervised classification:

clustering into classes identification of classes by user

Supervised classification:

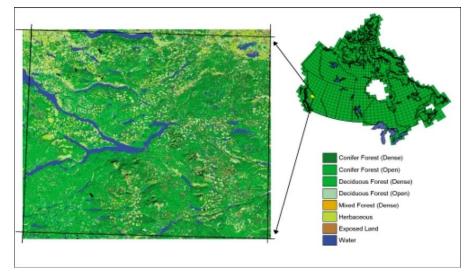
training areas to 'train' the classification, check the statistics of the classes created check resulting coverage for errors and accuracy

Unsupervised	Supervised			
Unknown classes beforehand	Pre-defined classes			
Clusters may not match desired classes	Defined classes may not match natural classes			
Desired clusters may be unidentifiable	Selected training areas may be inadequate			
a posteriori' cluster identification time-consuming	'a priori' training is time consuming			
Unexpected categories may be revealed	Only predefined classes will be found			
Immediate execution, quick	Takes longer, but better directed			

EOSD Earth Observation for Sustainable Development of Forests

80% Canada mapped from Landsat 7 ~2000

- using supervised classification, 480 Landsat scenes, 630 1:250,000 map sheets



27

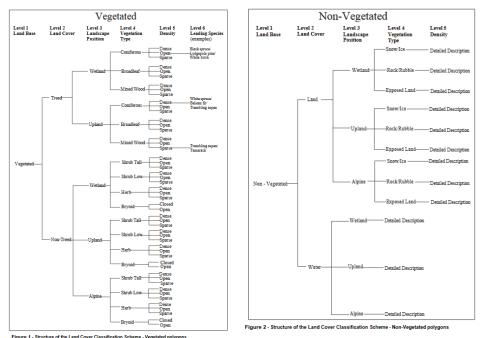


Figure 1 - Structure of the Land Cover Classification Scheme - Vegetated polygons EOSD Earth Observation for Sustainable Development of Forests ... http://ftp.maps.canada.ca/pub/nrcan rncan/vector/geobase lcc csc/shp en/

Classification summary

There are many articles on classification approaches:

Input channel combinations (see the next lectures)

Best algorithms unsupervised and supervised

•New approaches e.g. include texture, shape etc.

• Object based image analysis (not pixel based) .. See next slide

