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Remote Sensing

4, 3,2 Combination 54,3 Combinatin 2,5,4 Combination

https://forestwatch.sr.unh.edu/imagery/aboutimagery.shtml
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Gov Tile Cache Map  Satellite

Image Classification
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I Image Classification

* Image classification is the process of assigning pixels to
classes.

* categorise and label groups of pixels within an image to create
new information classes

« follows specific rules on how the pixels are grouped or assigned
* the classes form regions on an image

* therefore, image classification is used to create thematic maps
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Image Classification

* Groupings are of similar

pixels using multispectral
DNs

» Software was developed
following 1972 (Landsat 1)

» Served as a digital alternative e St s
. Classified layer in the Virginia Urban Tree Canopy Mapper -
to manual mapplng Of La nd http://www.utcmapper.frec.vt.edu
Cover
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Image Classification

* Land Use and Land Cover

* Land cover refers to the surface cover on the ground

* e.g.vegetation, urban infrastructure, water, bare soil

* Land use refers to the purpose the land serves

* e.g. recreation, wildlife habitat, or agriculture
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Land Use vs Land Cover (LULC) e.g. Parks

Sugarbowl-Grizzly Den Bowron Lakes Mt. Egmont / Taranaki, NZ
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I Image Classification

* A simple form image classification is to consider each pixel
individually and assign it to a class. This is referred to as

point classification

* But...

* It misses relationship between the pixel and its neighbors because
each pixel is considered in isolation

* E.g. human interpreter of air photos

(g

* Manual interpretation:
Features are classified by
simplification which is a
form of generalization
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* Human interpretation/ classification relies on attributes such as:

* Shape, pattern, texture, shadows, size, association, tone, colour

* Human eyes are not good at dlstlngwshmg between brightness of individual
pixels but do well with groups of pixels

« Digital Numbers from one band (e.g. an air photo) alone are rarely enough -
features are not unique

« Algorithms mostly use Digital Number (DN) =~digital version of tone/colour



Image Classification

* More complex classification processes consider groups of
pixels within the image as a means of using both textural
and spectral information.

* These are referred to as spatial or neighborhood classifiers

* An alternative way of categorization is based on technique
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Image Classification
* The main types of image classification are supervised classification
and unsupervised classification
* Supervised classification requires the analyst to identify areas on the image that
are known to belong to each category/class
* Unsupervised classification, on the other hand, proceeds with only minimal
interaction with the analyst in a search for natural groups of pixels present within
the image.
Presentation Title 12
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Band / channel selection
TM: 1-7; OLI/TIRS 1-11
Thematic Mapper

Operational Land Imager

» Landsat TM has 7 bands: You
would NOT select 3 visible
bands to classify

» The visible bands are similar -
and thus the composite is low in
contrast

Rand&5, 4 3

Unsupervised - how it works
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Brightness Values in TM Band 4

Brightness Values in T™ Band 4

Distribution of ISODATA
Mean Vectors after 1 Iteration

Brightness Values in TM Band 3 100

Distribution of ISODATA
Mean Vectors after 20 Iterations

Brightness Values in TM Band 3

Unsupervised classification -
algorithms and iterations

* 1. K-means minimises within cluster range of DNs

* 2. Fuzzy K-means enables mixed membership, based
on distribution of the cluster

+ 3.lIsodata can also merge or split clusters, so the
number of clusters is more flexible

The role of multispectral sensing in classification
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DNs in Band A are similar for Corn and Wheat
DNs in Band B are similar for Corn and Soybeans

... but if we use both Bands A and B, then all 3 differ

... Algorithms are ‘per pixel’ classifiers
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band correlation coefficients and scatterplots

Example: PG Landsat data (r values between bands)
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X83 (Near IR Band) DN
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The Visible bands are highly correlated (similar) .. (r = .96 to .97)
..so also are bands 5 and 7 (r=.93)

band 4 (near-IR) is not very correlated with Visible or MIR (nor thermal)

Note: these values will vary for different environments e.g. urban, desert, forested

Unsupervised classification
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Example of Visible bands only (2,3) versus Visible and Near-IR
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Cluster Means for TM Bands 2 and 3

Cluster Means for TM Bands 3 and 4

Cluster Means for TM Bands 3 and 4
e

Brightness Values in Band 4

Water
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5 10 IS5 20 25 30 35 40 45 50
Brightness Values in Band 2

] ]

5 10 1S 20 25 30 35 40 45 50
Brightness Values in Band 3

Two bands are shown for simplicity
Input bands selected - minimum 3 or 4 bands;

) 5 10 15 20 25 30 35 40 45 S50

Brightness Values in Band 3
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Classification: Band / Channel Selection

How to choose which ones to use:

1. Low correlation e.g. TM 3-4-5 or 2-4-7 (Visible-NIR-MIR)
2. Past experience, visual examination, logical thinking

3. Channels that separate the features we want to identify
(based on DNs / spectral curves / histograms )

4. Or simply just use them all ... (except the thermal band)

Unsupervised classification
Characteristics

-user needs little 'a priori' knowledge of area

-The software clusters pixels by natural DN groupings
(based on similarity and contrast - ‘natural breaks’)

Steps

- determine how many classes / clusters

- determine which input bands / channels to use
- run classifier :K-means or Isodata

- Rerun with more clusters if needed

- assign names to classes (merge classes if needed) 20

10
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classification report
1 iteration

Note:
# clusters with 0 pixel
Clusters with ### pixa

DN values for bands 3,4,5

Final step ..
Assigning
names to
clusters (and
merge some)

This is a new channel
in your .pix file
- It's not a band

Colours are random

Note: urban
classification
is NOT easy!
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Classification Result Channel
Humber of Clusters: 10
Cluster Pixels Hean
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After 16 iterations and 16 classes/clusters

Fuzzy classification - each pixel has
potential membership in more than one
cluster
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Merging and adding classes

Merging - if clusters are not really separate

i Classification Report -
Classification Algorithm: Fuzzy K-Means Unsupervised
Classification Input Channels: 3,45
Classification Result Channel; 9
Number of Clusters: 16
Cluster Pixels  fean Std Dev @
{ 2) 296774 23,24140 8,24862

44,77742 8,91763
32,44915 10,04080
( 3) 292356 24,48324 7.14404
£7.65602 10,
43,51679 9.53926
(4 155525 24.75149 5,03361
107,39487 18,20386
74,22362 13,35878
{ 1) 135750 42,07941 13.08230
26,82458 8,12628
16.,47926 11,00162
{8 151100 42.87475 9,25017
B0, 36603 13,13133
89,47187 18,67191
7 86132 84,79987 12,60066
59,46275 9,37685
20,03181 14,03484

¢ 8

(9

(10)

(12)

(13)

(14)

( 18)

{ 18)

features; Clusters are merged if they overlap

spatially or are similar spectrally.

Splitting / adding

If one cluster covers too much area -
run again with more clusters

Can generate many clusters, and
then group merge later ...
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16.81002
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Sieve - 'F| |ter Mt. Kilimanjaro

Classification ALWAYS

produces a 'salt and

pepper' effect with isolatec,.

pixels s

This is a result of

a. finelocal variationsin
DNs and

b. b.using ‘per-pixel’
classifiers

26
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Challenges in classification - why it doesn’t always beat digitising
There are many spatial variations in reflectance (a range of DNs for a feature)
e.g. stand purity, understory, age/maturity, density, disease, sun angle, topography

—
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Classes/clusters: water, bare rock, glaciers, deciduous, coniferous, shadow?, cutblocks, planted..

There are many causes of spatial variations in reflectance (a range of DNs for a feature)
URBAN / HUMAN - mosaic of smaller features inside a 30 metre pixel
- amount of grass, types of material, roofing colour, weathering, sun angle (building shape)

28
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Classification....

It is always complex - the classes and their contrasts
There are many causes of spatial variations in reflectance
Most (natural) features are continuous, not discrete

Using only DNs:
Any land cover types have a range of values
Conversely, different cover types can look similar

Further complications for all images:
a. moisture (recent events)

b. edge (mixed) pixels

c. sun angle (illumination)

Textbook classification goal: ~ 85% accuracy
Even manual digitizing may not do any better
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