GEOG 204

LECTURE 2

1

1. Lit Review - next week

2. Crowded Room - next week - A live stream

- A change in the schedule

This week: VECTOR and RASTER Data

4

The nature of geographic phenomena

• Temporal Variation

Parcel subdivision

The nature of geographic phenomena

- Spatial Variation
 - Tobler's First Law of Geography: "everything is related to everything else, but near things are more related than distant things."
 - Implications for appropriate representation:
 - Significance of spatial autocorrelation
 - Proximity effects
 - Geographic scale (level of detail)

Soil pH Distribution

Representing geographic space

- Two basic forms: Objects and Fields
 - Objects are discrete and definite, such highways, parks, municipalities...
 - Fields are distributed continuously over a large area for example temperature, rainfall, elevation...

Representing geographic space

- The object view considers space to be populated by distinguishable, discrete, and bounded entities.
 - Objects have identity, boundaries or spatial extent and attributes
 - Points, lines, polygons
 - E.g. a representation of individual houses in a city suburb
 - Uses the Vector Data Model

Representing geographic space

- A geographic field treats space as being populated by one or more continuous phenomena. For every point in the study area, a value can be determined.
 - E.g. River depth can be determined anywhere on a bathymetric map of the Netchako River
 - Uses the Raster Data Model

 Continuous field
 A value can be determined for every point on the surface
 Discrete object
 The space between them is potentially 'empty' or undetermined
 Keal World

9

Vector data model

Three types of geometry

- Points:
 - · dimensionless (no width, length, or height)
 - A pair of coordinates
- Lines:
 - One dimension
 - have length
 - At least two coordinate pairs (vertices)
 - Terms: Line, polyline, linestring
- Polygons:
 - Two dimension
 - · closed vertices
 - Minimum vertices for a triangle?
 - Terms: polygon, multipolygon

Source: Wikimedia

Vector data model

Formats

- Shapefile
 - Developed by ESRI as a data interchange format
 - Open specification, regulated by ESRI
 - A collection of multiple files
 - shp, .shx, .dbf, .prj, ...
 - A shapefile can represent one geometry type

Other formats?

• GeoJSON

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-122.8155, 53.8922]
 },
 "properties": {
 "name": "UNBC"
 }
}

11

Raster data model

- Phenomena is continuous over a large area
- Regular tessellation of space
 - Triangles, squares, hexagons

12

Raster data model

Characteristics of raster data Source: Lo and Yeung 2007. Concepts and technics of Geographic information Systems. Pearson Prentice Hall

13

Raster data model

- Formats
 - GeoTIFF
 - ESRI Grid
 - Pix

It is not a debate

- Spatial data are grouped
 by themes
 Layers
- The concept of layering is key in GIS and computer aided design (CAD)

Properties of GIS data

- Spatial (x,y location) = 'where is it ?'
- Attributes (multiple)
 = 'what is it' ?
- ≻ [Pattern]
- = 'how are they related' ?
- > Other questions?

Location and Attributes

x (easting), y (northing) [z-elevation] coordinates

e.g. latitude / longitude (degrees, minutes, seconds)

Location and Attributes

Attribute data: allows us to ask the question ... "what is it ?"

- > Every layer has an associated table
- > These are linked to spatial location by a code number
- >Attributes are stored in columns as *items*
- Rows display the attributes for each feature = records
- Entries may be text strings, integers, float (decimal) or dates

Item (Description)

POLYGON ESA_1|SPC1|PCT1|SPC2|PCT2|AbE_CL|HT_CL_IN|SITE_IDX CRNCL_CL] SitePrep | Dist | YearDist | Regen | STTEND

Record	67	HW	40	S	40	2	1	16.6	8 B	B	1985	1999	F
(place) -:	> 133		0		0	0	0	0	0		0	0	
(place)	199	HM	40	HW	30	9	3	7.2	5	Leg	1980	0	
	353	HW	90	BA	10	9	4	11.6	1 B	Ess.	1980	1999	F
	229	HW	70	HM	20	9	3	9.5	5 B	L	1980	1999	F
	264	HM	50	HW	30	9	3	7.5	5 H	L	1980	1999	F
	162		0	1	0	0	0	0	0		0	0	
	393	HW/	60	HM	20	9	3	8.5	5 H	L	1980	1999	R
	165	HM	80	BL	20	9	3	7	4 H	L	1980	1999	R

Types of questions a GIS can answer - resulting from spatial location, attributes and patterns

a. Location: WHAT exists here

"What is at this location ?" e.g. Dig safe?

b. Condition: WHERE are specific conditions Where are all the pine dominated stands?

c. Trends: WHAT HAS CHANGED (over time) How far has the riverbank receded in the past 10 years?

d. Patterns: HOW are features related

"How does proximity to salmon streams affect the number of bear attacks";

e. Modelling: WHAT IF ..?

What if the climate warmed by 2 degrees? (e.g. effect on habitats)

Scale

- Scale: The ratio or relationship between a distance on a map and the corresponding distance the ground.
- Map details depend on the scale of the data
 - The larger the scale, the more the detail
 - Large scale is synonymous with fine scale (fine granularity)
 - The smaller the scale, the less the detail
 - Small scale is synonymous with course scale (course granularity)

27

Scale

- Map details depend on the scale of the data
 - With generalisation and simplification one can create a map with a course grained scale from large scale data
- Spatial Scale
 - Resolution: the size of your pixel (raster)
 - Extent: the size of your study area
 - "small-scale" operation covers a small area
 - "large-scale" operation covers a large area

Scale

- Cartographic Scale
 - 1:1000000 (1 cm = 10 km)
 - Crucial in paper based maps
 - Has importance in the digital medium
- Scale Bar
 - Provides a visual indication of the size and distance a map.
 - Use appropriate (intuitive/simple)

29

- Note:
 - Zooming in on a small scale map does not increase the quality of the map
 - Match the appropriate scale to the level of detail required in the project or the scale of the date.
 - A detailed map ≠ accurate map

Scale

- Know the scale of your spatial data.
 - Can you resolve what you want to see?
 - Temporal scale frequency for data collection
 - Ecological scale scale and spatial resolution should match the scale of the ecological phenomena
 - Caution when comparing analyses from maps/data of different scales
- Spatial data are intended for a specific scale or a range of scales

