### **Digital Elevation Models (DEM)** How has relief depiction changed with DEMs /GIS ?

A DEM is a computer representation of elevation data to represent terrain



- And who built that road ~~~~~??

### **1. Sugar loafs:** still used to show rough location of mountains – or 'ye olde looke'



### 2. Hachures - not a common software option

show orientation of slope, and by their thickness and a general sense of steepness Only experimental in GIS / digital





Westfjords, Iceland

#### http://mike.teczno.com/notes/hachures.html



3. Spot heights and 4. Contours – digitised from printed maps – digital layers

The National Topographic DataBase (NTDB) is the digital equivalent of the (13,350) printed maps - download from Http://www.geogratis.ca

Contour lines are a standard layer in digital topographic databases and web mapping for display. e.g. PGmap



Contours are not DEMS, but can be used to create them ... Contours are 1-dimensional (length) ... with no info between the lines

# Digital Elevation Models (DEMs)

A DEM is a continuous grid of elevation values - one height per pixel

The DEM holds terrain elevations previously stored in contours



| 1122 | 1112 | 1101 | 1100 | 1106 | 1112 | 1116 |
|------|------|------|------|------|------|------|
| 1119 | 1116 | 1104 | 1091 | 1093 | 1096 | 1098 |
| 1107 | 1104 | 1099 | 1083 | 1078 | 1078 | 1079 |
| 1097 | 1094 | 1092 | 1083 | 1064 | 1066 | 1066 |
| 1091 | 1088 | 1082 | 1075 | 1060 | 1056 | 1053 |
| 1085 | 1079 | 1073 | 1063 | 1055 | 1049 | 1041 |
| 1075 | 1070 | 1064 | 1058 | 1048 | 1039 | 1036 |
| 1066 | 1060 | 1054 | 1049 | 1041 | 1031 | 1025 |
| 1056 | 1050 | 1044 | 1039 | 1033 | 1026 | 1030 |
| 1047 | 1040 | 1035 | 1029 | 1025 | 1025 | 1024 |
| 1039 | 1033 | 1026 | 1023 | 1023 | 1023 | 1023 |
| 1030 | 1025 | 1023 | 1023 | 1023 | 1023 | 1023 |
| 1023 | 1023 | 1023 | 1023 | 1023 | 1023 | 1023 |
| 1023 | 1023 | 1023 | 1023 | 1023 | 1023 | 1023 |

Elevation values in metres

# **Digital Elevation Models (DEM)**

also referred to (Europe) as Digital Terrain Models (DTM)



Digital Surface Models (DSM) e.g. vegetation canopy

### DEM creation methods A> by digitising contours (NTS maps -> NTDB layer) -Done for all of Canada (~1985-95)

stereo photos -> contour lines -> digitised lines -> interpolate to grid



# **DEM creation**

- B. Digital stereo-grammetry: (e.g. BC TRIM 1980s)
- This is a smoother option, captured directly from aerial photographs
- stereo mass photos ->
- convert to raster GRID
- ArcGIS: 'topo to raster'



## BC TRIM DEM 25m raster grid (1996)

### Interpolated to 25m grid

In 1:250,000 map sheets

Vertical accuracy ± 10metres (sub-metre precision is useless)-

View on BC iMap

### **DEM creation**: **C. Direct image grid DEM** (2000->) From satellite raster imagery (1-100 metre pixels)



Satellite imagery -> DSM ; Aerial photography -> DTM

### **D. LiDAR DEM > 2000 (PGmap, 2014)** most Canadian cities have a LiDAR DEM

https://pgmappub.princegeorge.ca/Html5Viewer/?viewer=PGMapMobile



'Glacial Lake PG' beaches~10,000 BC ~760m elevation

# **DEM** (raster GRID) data

DEMs have been created at a variety of scales

Some downloaded free – except maybe the top one in this list

| AGENCY              | SCALE      | TYPICAL<br>RESOLUTION<br>(metres) |                                          |  |
|---------------------|------------|-----------------------------------|------------------------------------------|--|
| D.Municipal         | 1: 5,000   | 1                                 | e.g City of PG                           |  |
| <b>B.Provincial</b> | 1: 20,000  | 25                                | BC TRIM                                  |  |
| A. Federal          | 1: 50,000  | 50                                | NTDR (Canada)                            |  |
| A. Federal          | 1: 250,000 | 200                               | ivi DD (Canada)                          |  |
| C. Global           | 1: 100,000 | 90                                | <b>SRTM (Radar)</b><br>e.g. Google Earth |  |

- A. From digitizing contours;
- C: satellite image data;

- B: masspoints from photogrammetry
- D: LIDAR

### **Summary of common relief depiction methods**

| TECHNIQUE              | COMPONENT | FEATURES                 |  |  |  |
|------------------------|-----------|--------------------------|--|--|--|
| Sugar loafs            | shape     | Simple, stylistic        |  |  |  |
| Hachures               | slope     | much ink, no heights     |  |  |  |
| Spot Heights           | elevation | non-visual data points   |  |  |  |
| Contours               | elevation | heights, 'abstract '     |  |  |  |
| Hyps. tints            | elevation | Layer colours            |  |  |  |
| Shaded relief          | aspect    | Visual, artistic         |  |  |  |
| Tanaka<br>contours     | aspect    | visual but 'noisy'       |  |  |  |
| Slope maps             | slope     | uniform slope areas      |  |  |  |
| '3D'<br>perspectives   | shape     | visual, no fixed scale   |  |  |  |
| <b>Physical models</b> | all       | true 3D – takes up space |  |  |  |

Manually created from contours, but now DEMs

## 5. Hypsometric Tints (relief methods) Generated from DEM

Selection of hues, chromas from colour sequences

DEMs displayed as grayscale or a colour ramp -> 'tints' elevation values (usually) in metres



Grayscale is used to store/display elevation data for analysis/viewing – do <u>NOT</u> use for map output

# Classified layer tints

Easy to produce and modify

As the crow flies cARTography, ON



# 6. Shaded relief (hillshade)

Analogue method: photos -> contours -> sketch shaded relief **Digital method:** digital photos/image -> DEM -> shaded relief



#### Prince George DEM (BC TRIM): higher elevation = brighter tone



The DEM is used to create tints or hillshade, but is not an effective map layer otherwise

The pixel values = elevation e.g. 760m

## Shaded relief (hillshading) : No need for artistic ability.

BC TRIM DEM Values = 0-255



The user selects azimuth / zenith <u>315 /</u> <u>45</u> standard to match NW light source.

NEVER show hillshade layer in legend

... the numbers are meaningless



### Using the GIS software <u>transparency</u> option to combine shading and tints

Routine GIS option



## Shaded relief (hillshading) plus elevation tints



### Standard topographic map PLUS added hillshading – available for <u>all</u> Canada NTS maps: gotrekkers.com Value: easier visualisation of the landscape 1:50,000 / 250,000



AUDIODUCIOUCO

| 117 | The |   |   | - | · · · · · · · · · · · · · · · · · · · |
|-----|-----|---|---|---|---------------------------------------|
| 117 | 197 | ÷ | - | 1 | (Ref.                                 |
| V   |     |   |   |   | 110                                   |

### Manual shading: less common -100 hours / square foot (trained specialist)



## 7. Tanaka relief contours

- not a common software option

### **Tanaka contours - now an option in ArcGIS**

**ArcGIS Terrain Tools** 



8. DEM layers: Slope – used in GIS analysis, not often as map layer



Values = 0-90 (degrees) or also in %

Bright = steep

Dark = flat

### 9. (2.5D) perspectives (and flythroughs) – Google Earth / GIS



Plus "fly-through" animations

Hand-drawn

(i))

# THE MAN BEHIND THE MAP

Hand painted mountain maps by James Niehues

VIEW ART



Google Earth as Perspectives for ski hills e.g. Whistler-Blackcomb

## 9. Perspectives



### Whistler – Brandywine Meadows – with 'draped' NTS map



http://www.stm-usa.com/bc.htm

## 10. True 3D physical models

-40 x 74' 1:99,000)

-Solid Terrain Modelling Cut by laser



IS THE CENTERPIECE OF THE NEW "BC EXPERIENCE" GEOGRAPHIC DISCOVERY CENTER IN VICTORIA'S HISTORIC CRYSTAL GARDEN

SECOND (2)



Note: Jack Challenger's BC wood map is 25 x 25m Manually carved / created 1947-54, now in storage

## 3d printer, Filaprint, Tumbler Ridge

http://www.filaprint.ca/



Jody Mitchell

## How have DEMs inpacted relief depiction ?

Sugar-loafs and hachures – can be added graphically

Contours – digitised layer, but a DEM is more useful

Hypsometric Tints – easily applied colour ramp from DEM

Shaded relief (hillshading) - greatest impact (mapping)

Perspectives - greatest impact (visualisation)

True 3D models – still some made manually, modest change



True 3D models: Virtual reality sandbox (Eclipse Geomatics, Smithers BC)

https://www.youtube.com/watch?v=lqj4gxCE128