Unsupervised Classification

Classification = simplification, mapping

The promise of satellite imagery: (1970s-80s)

- A. Rapid map updating
- B. Automated mapping of 'Land Cover' / Land use
 - no manual digitizing ... use of multispectral band data

VRI (BC -vegetation resource inventory) example of manual digitising

Manual interpretation e.g. air photos Features are classified = simplified – a form of generalisation

Human interpretation / classification relies on attributes such as: Shape, pattern, texture, shadows, size, association, <u>tone</u>, <u>colour</u>

Algorithms mostly use Digital Number (DN) =~digital version of tone/colour²

Remote Sensing Classification

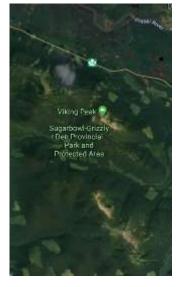
- Automated grouping of similar pixels using <u>multispectral</u> DNs
- Software developed following 1972 (Landsat 1)
- Digital alternative to manual mapping of Land Cover

Classified layer in the Virginia Urban Tree Canopy Mapper - http://www.utcmapper.frec.vt.edu

Land Use v Land Cover (LULC) e.g. Parks

Sugarbowl-Grizzly Den

Bowron Lakes

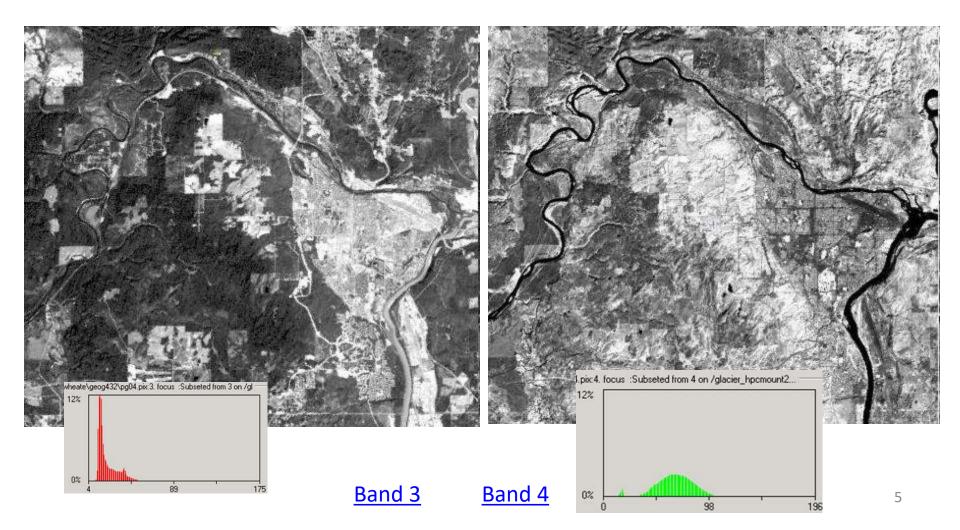


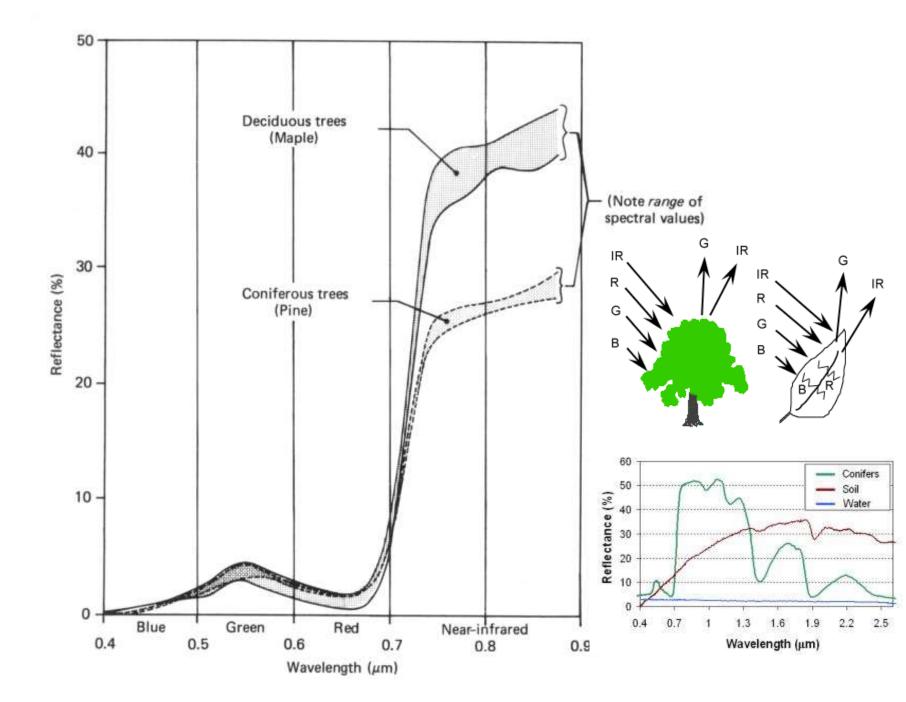
Mt. Egmont / Taranaki, NZ

Using just one band to classify ?

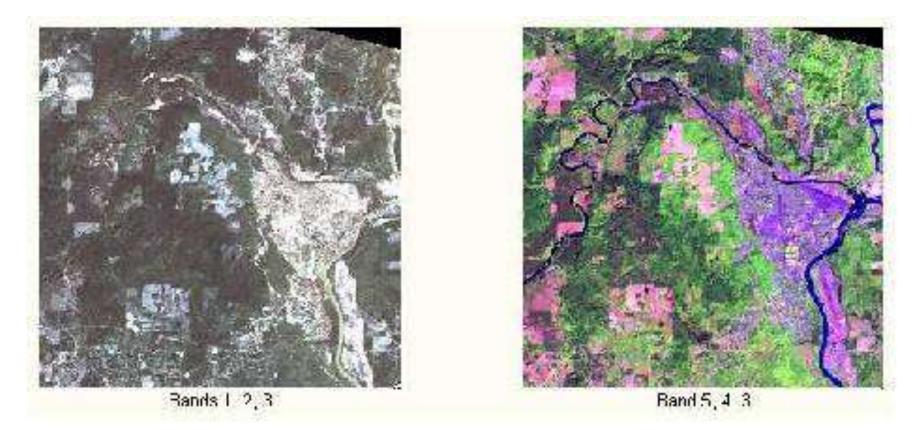
One image band could only be treated as an air photo (interpretation)

Digital Numbers from one band alone are rarely enough - features are not unique



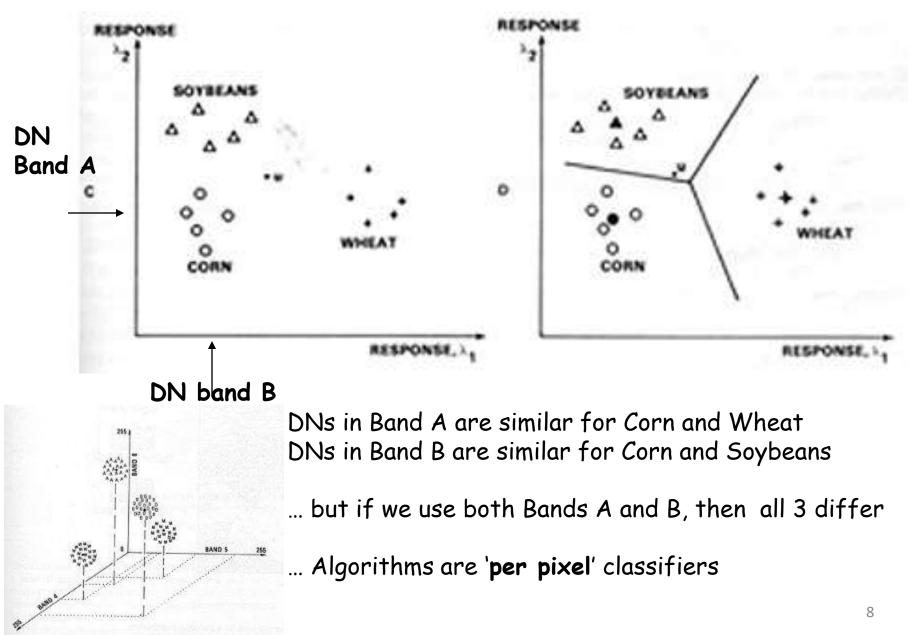


Band / channel selection TM: 1-7; OLI/TIRS 1-11 Thematic Mapper Operational Land Imager



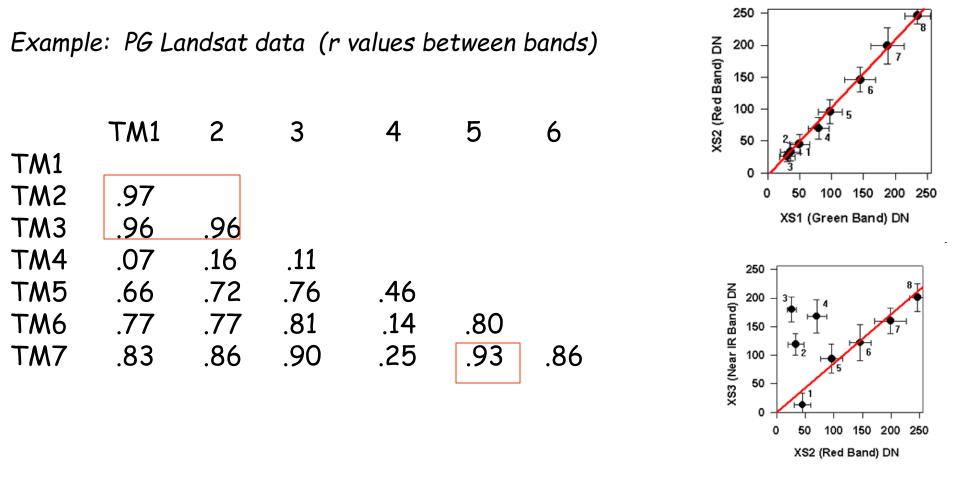
Landsat TM has 7 bands: You would NOT select 3 visible bands to classify

The visible bands are similar - and thus the composite is low in contrast



The role of <u>multispectral</u> sensing in classification

band correlation coefficients and scatterplots



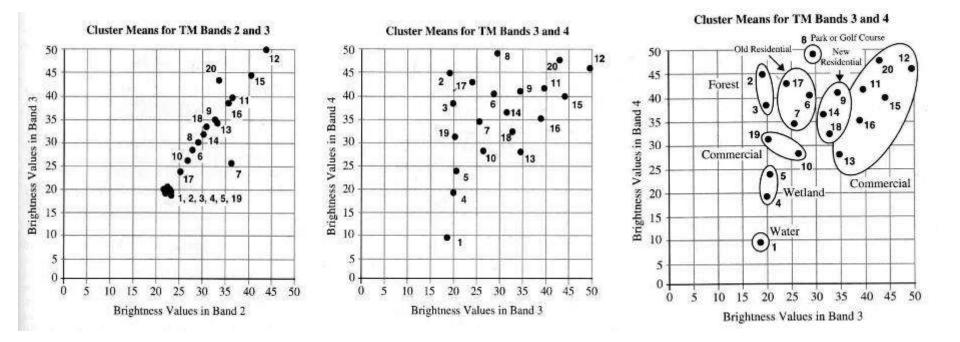
The Visible bands are highly correlated (similar) .. (r = .96 to .97)

.. so also are bands 5 and 7 (r = .93)

band 4 (near-IR) is not very correlated with Visible or MIR (nor thermal) Note: these values will vary for different environments e.g. urban, desert, forested

Unsupervised classification

Example of Visible bands only (2,3) versus Visible and Near-IR



Two bands are shown for simplicity Input bands selected - minimum 3 or 4 bands;

Classification: Band / Channel Selection

How to choose which ones to use:

- 1. Low correlation e.g. TM 3-4-5 or 2-4-7 (Visible-NIR-MIR)
- 2. Past experience, visual examination, logical thinking
- 3. Channels that separate the features we want to identify (based on DNs / spectral curves / histograms)

4. Or simply just use them all ... (except the thermal band)

Unsupervised classification

Characteristics

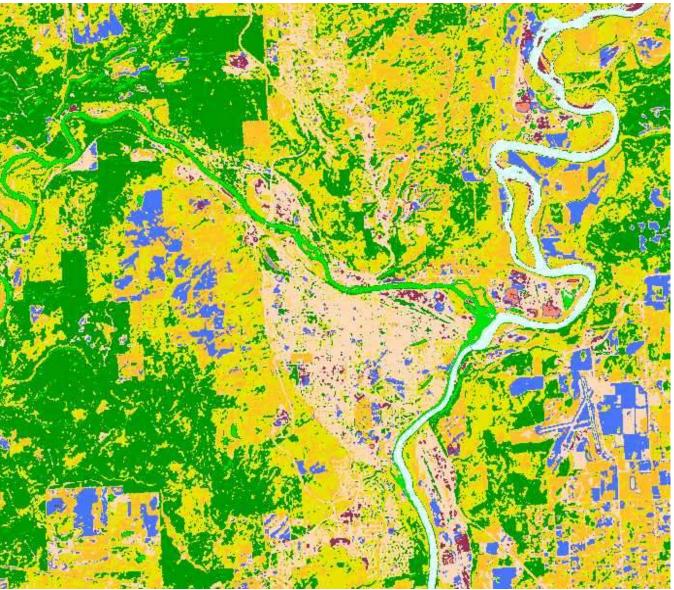
-user needs little 'a priori' knowledge of area

-The software clusters pixels by natural DN groupings (based on similarity and contrast - 'natural breaks')

Steps

- determine how many classes / clusters
- determine which input bands / channels to use
- run classifier : K-means or Isodata
- Rerun with more clusters if needed
- assign names to classes (merge classes if needed)

Unsupervised result - 10 classes (clusters)



This is a new channel in your .pix file - It's not a band

Colours are random

Note: urban classification is NOT easy!

Unsupervised - how it works YIKES! (do we need to know this?)

Algorithm starts with statistical seed points

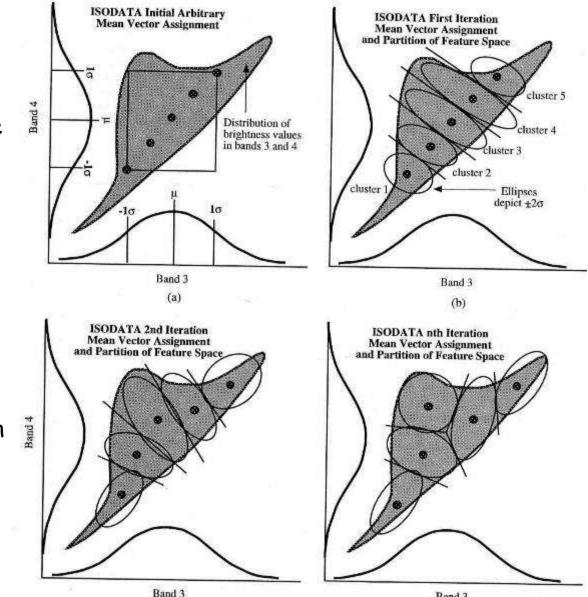
Assigns each pixel to the closest seed

□ Calculates group mean in 'n-dimensional' space

Re-assigns pixels to the closest group mean

□ Re-calculates group mean

Iterates (10?) until relatively little change and fixes groupings

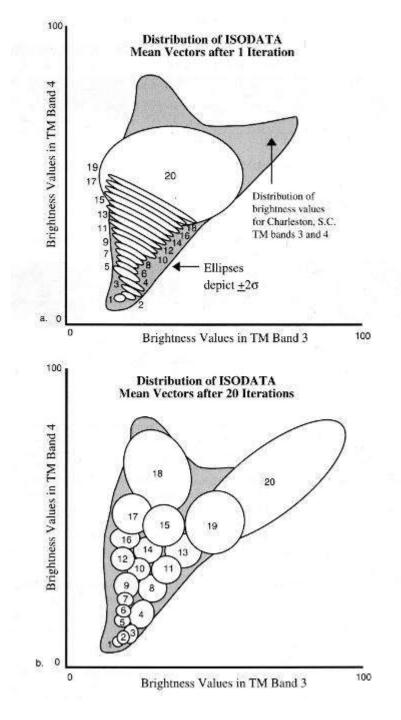


unsupervised classification - algorithms and iterations

1. K-means minimises within cluster range of DNs

2. Fuzzy K-means enables mixed membership, based on distribution of the cluster

3. Isodata can also merge or split clusters, so the number of clusters is more flexible



classification report

1 iteration

Note: # clusters with 0 pixels Clusters with ### pixels

DN values for bands 3,4,5

Final step .. Assigning names to clusters (and merge some)

	ion Result (
Number of (Clusters: 10			1.20
Cluster	Pixels	Mean	Std Dev :	
(7)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	
(9)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	
(8)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	
(10)	0	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	
(2)	567257	19.93583 46.80288 34.35418	2.43998 6.96298 5.57951	
(1)	40287	21.21982 23.42244 19.16435	4.59113 6.07720 5.15152	=
(3)	394735	24.69793 59.00346 50.67980	5.14680 7.70974 7.30103	
(4)	72072	28.48148 68.95187 70.11754	6.31398 12.54581 6.67919	Red and a second se
(5)	771	63.92348 69.70298 90.39559	11.94499 11.32545 16.27601	
(6)	81	92.85185 101.97531 103.75309	7.89297 8.75027 17.34226	
Total	1075203			

After 16 iterations and 16 classes/clusters

*	Cla	ssification	Report	_ (8)	85354	122,33620 85,34046 19,40815	10,20878 8,68392 16,75611
Classifica Classifica	tion Input C tion Result (hannels: 3,4 Channel: 9	ans Unsupervised 5	(9)	79592	151.05591 105.45887 20.59924	9,22842 8,13428 20,61743
	Clusters: 16			(10)	60789	175,72850	8,52307
Cluster	Pixels	Mean	Std Dev :	N (\$530 M	020343455	125,70449	8,00244
(2) 296774	23.24140 44.77742 32.44915	8,24662 8,91783 10,04080			25,36989	25,79001	
			(11)	55539	201.23238	7,64972	
(3) 292356	24,48324	7,14404			142,52280 17,82207	7,16980 16,81002	
	67,65602	10,67916	an 12		17.02207	10:01002	
	49,51679	9,53926	(12)	54187	225,29511	7,08180	
(4) 155525	24,75149 107,39487	5,03961 18,20386			159,06710 16,18565	6.45671 13.71707	
	74,22362	13,35878	w	115720462			
(1) 135750	42.07941 26.82458 16.47926	13,08230	(13)	56164	247.23974 172.45732	6,06449 4,56608	
		8,12628 11,00162			13,11189	7,50873	
2 (17)2	2- 24 00-000			1.443	147005	054-04040	0000770
(5) 151100	42.87475 60.36603	9,25817 13,13133	(14)	113965	254,84619 185,52277	0,99330 4,41832	
	89,47187	18,67191			12,44097	4,33174	
(7) 86198	84,79987 59,46275 20,03181	12,60066	(15)	51887	254,93781	0,76476	
		9.37685 14.03484	3. HANK		202,95095	5,59141	
		24440701	+ (*******			14.38227	7,67388
		an aab	nival has not onti	10 A A A A A A A A A A A A A A A A A A A			

(16)

33140

254,99879

225,13265

13.28431

Fuzzy classification – each pixel has potential membership in more than one cluster

0.08035

3.35810

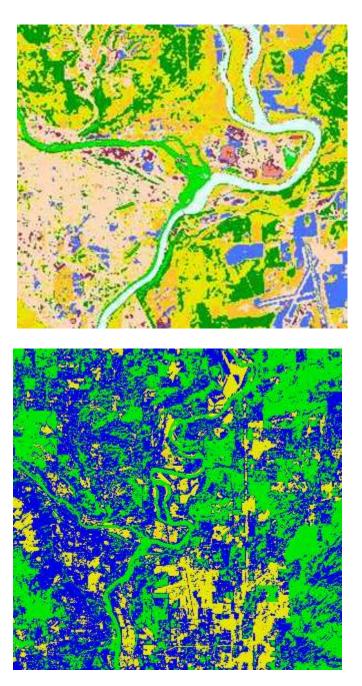
Merging and adding classes

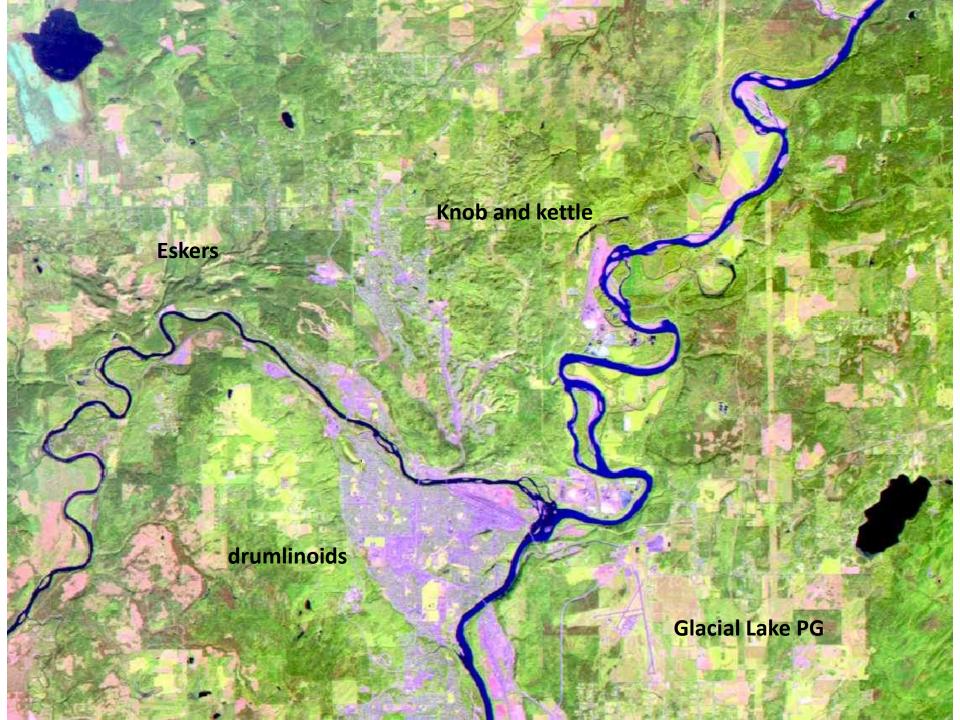
Merging – if clusters are not really separate features; Clusters are merged if they overlap spatially or are similar spectrally.

Splitting / adding

If one cluster covers too much area - run again with more clusters

Can generate many clusters, and then group merge later ...

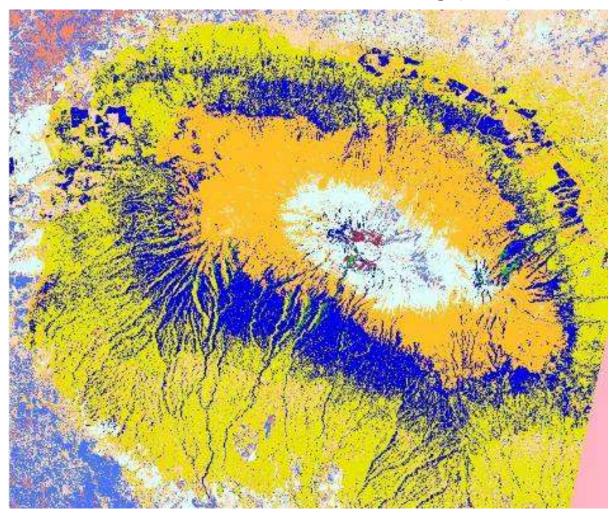




Sieve - filter

Mt. Kilimanjaro

Classification **ALWAYS** produces a <u>'salt and pepper</u>' effect with isolated pixels This is a result of a. fine local variations in DNs and b. using '**per-pixel'** classifiers



Minimum desirable cluster / GIS polygon – 1 ha ? ... ~ 11 pixels ?

Challenges in classification – why it doesn't always beat digitising There are many spatial variations in reflectance (a range of DNs for a feature) e.g. stand purity, understory, age/maturity, density, disease, sun angle, topography

Classes/clusters: water, bare rock, glaciers, deciduous, coniferous, shadow?, cutblocks, planted..

There are many causes of spatial variations in reflectance (a range of DNs for a feature) URBAN / HUMAN - mosaic of smaller features inside a 30 metre pixel - amount of grass, types of material, roofing colour, weathering, sun angle (building shape)

Overall summary on classification

It is always complex - the classes and their contrasts There are many causes of spatial variations in reflectance Most (natural) features are continuous, not discrete

Using only DNs: Any land cover types have a range of values Conversely, different cover types can look similar

Further complications for all images:

- a. moisture (recent events)
- b. edge (mixed) pixels
- c. sun angle (illumination)

Textbook classification goal: ~ 85% accuracy Even manual digitizing may not do any better