Unsupervised classification: review

Characteristics

-user needs no 'a priori' knowledge of area (but it helps)

software clusters pixels by natural DN groupings
(based on similarity and contrast = 'natural breaks')

Steps

- determine input bands / channels
- determine how many classes / clusters
- run classifier : K-means or Isodata

-assign names to classes (merge classes if needed)

Supervised classification

Characteristics:

User has 'a priori' info: can identify homogenous known areas

Software groups the pixels according to these 'training areas'

Steps

determine input bands / channels

- identify 'training areas' for each class
- Check the statistics for separability

run classifier - minimum distance / maximum likelihood

- Calculate accuracy

Understanding images for training areas selection Reflection in visible / near IR / midIR

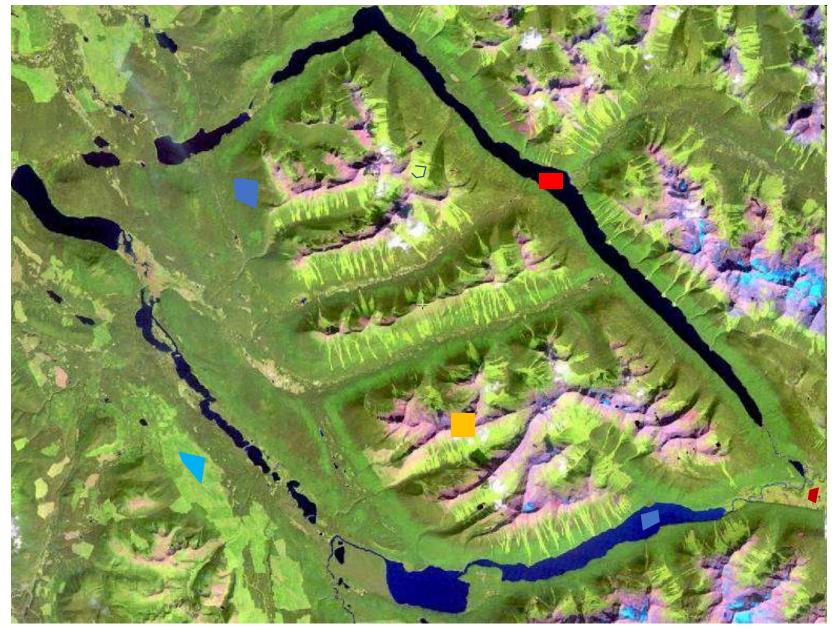
In a Landsat TM 5-4-3 Colour composite

Visible = Brightness

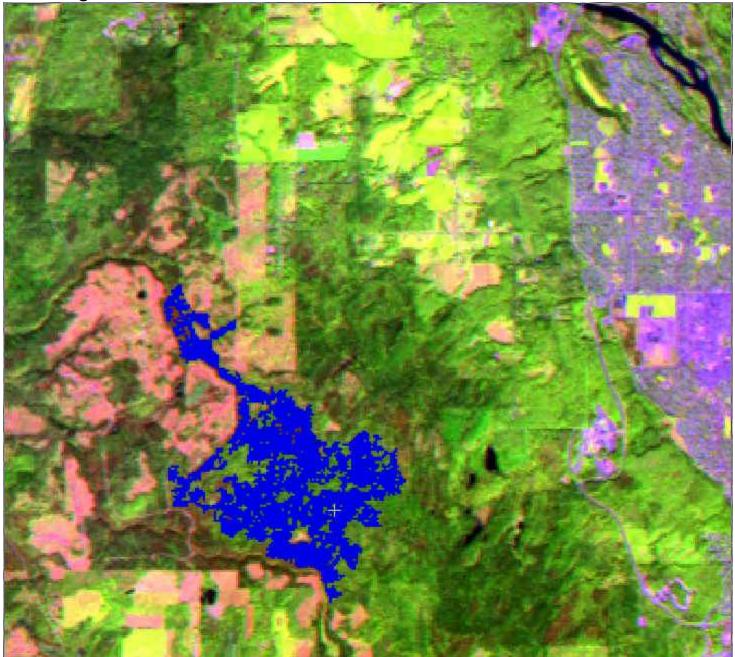
Near-IR= vegetation (vigour)

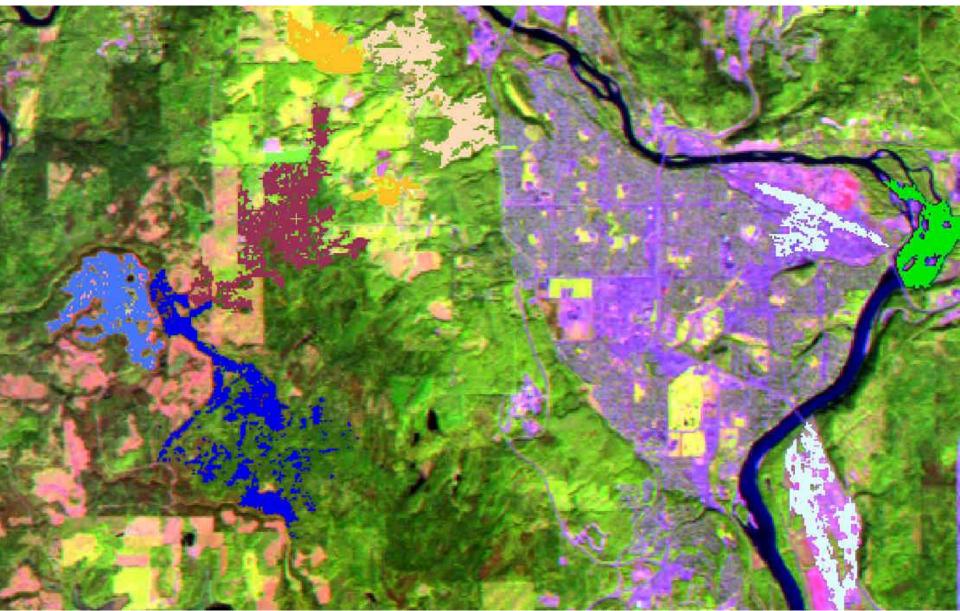
MIR = dryness –low moisture

Red = Dry, not much veg.


Green = Healthy Vegetation brighter = deciduous

Black = low reflection, water


Purple (Red / Blue) = built-up



Creating training areas - digitizing polygons (in lieu of ground data)

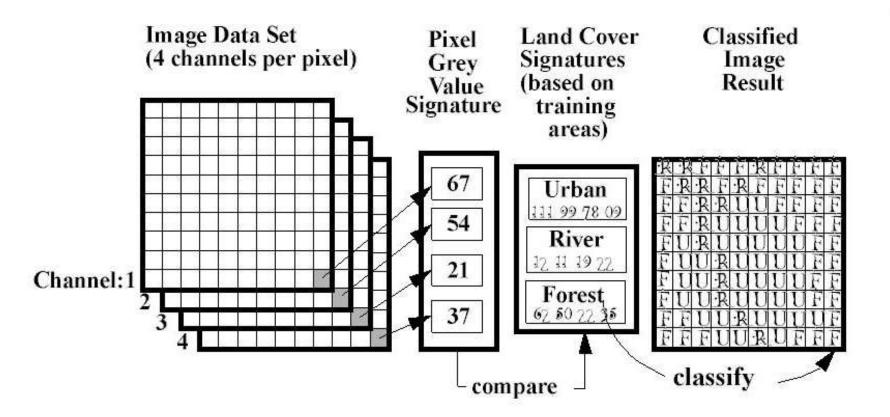
Raster seeding

	Raster Seeding	
Input Layer		
Selection criteria:	Classification Input	Layers
Selected layers:	pg14sept2011.pix:5.4,3	
Output Layer Selected layer: Trai	ning areas	
Properties		
Input pixel value to	olerance: 10 🗘 1X 💙	
Neighborhood :	🧧 4 Connect 🖳 🔿 8 Connect	
\$?		Close

4

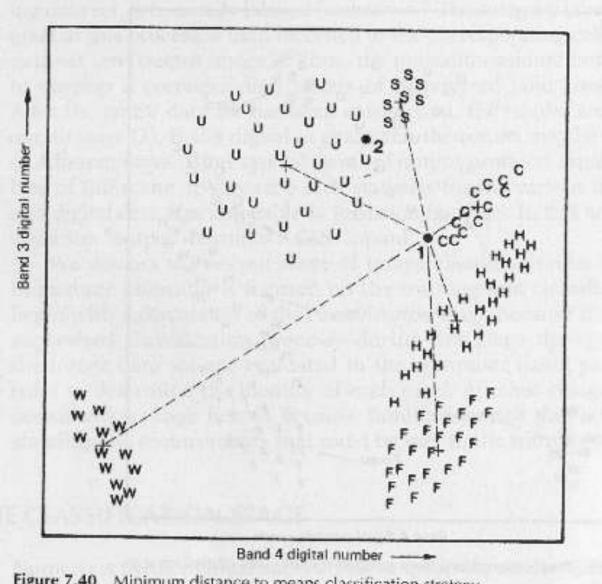
Raster seeding

Supervised classification: separability


Create ground training sites for each class type (polygons, now 'seeding')

Create class signatures and check for differences (separability)

BAND:	1	2	3	4	5	6 (TH)	7	No. of Pixels
Class								
1. Seawater	57.4	16.0	12.0	5.6	3.4	112.0	1.5	2433
2. Sediments1	62.2	19.6	13.5	5.6	3.5	112.2	1.6	681
3. Sediments2	69.8	25.3	18.8	6.3	3.5	112.2	1.5	405
4. Bay Sediment	59.6	20.2	16.9	6.0	3.4	111.9	1.6	598
5. Marsh	61.6	22.8	27.2	42.0	37.3	117.9	14.9	861
6. Waves Surf	189.5	88.0	100.9	56.3	22.3	111.9	6.4	1001
7. Sand	90.6	41.8	54.2	43.9	86.3	121.3	52.8	812
8. Urban1	77.9	32.3	39.3	37.5	53.9	123.5	29.6	747
9. Urban2	68.0	27.0	32.7	36.3	52.9	125.7	27.7	2256
10. Sun Slope	75.9	31.7	40.8	43.5	107.2	126.5	51.4	5476
11. Shade Slope	51.8	15.6	13.8	15.6	14.0	109.8	5.6	976
12. Scrublands	66.0	24.8	29.0	27.5	58.4	114.3	29.4	1085
13. Grass	67.9	27.6	32.0	49.9	89.2	117.4	39.3	590
14. Fields	59.9	22.7	22.6	54.5	46.6	115.8	18.3	259
15. Trees	55.8	19.6	20.2	35.7	42.0	108.8	16.6	2048
16. Cleared	73.7	30.5	39.2	37.1	88.4	127.9	45.2	309

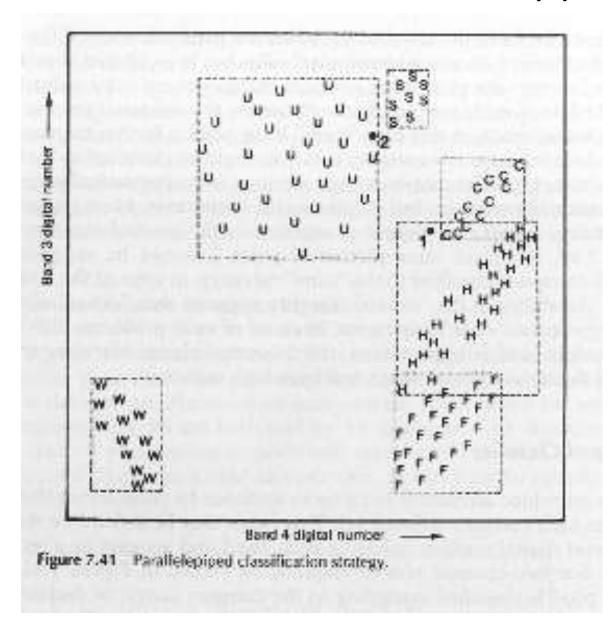

http://www.fas.org/irp/imint/docs/rst/Sect1/Sect1_17.html

Supervised - class assignment

Per pixel classifiers

a. Minimum distance Supervised classification methods:

The graphic is 2D


Letters indicate a training pixel

Think in ndimensions:

The screen can only display 3 bands but a classifier can input many more

Figure 7.40 Minimum distance to means classification strategy.

Supervised classification methods:

Less used due to overlap of training areas - conflict of assigning pixels to classes

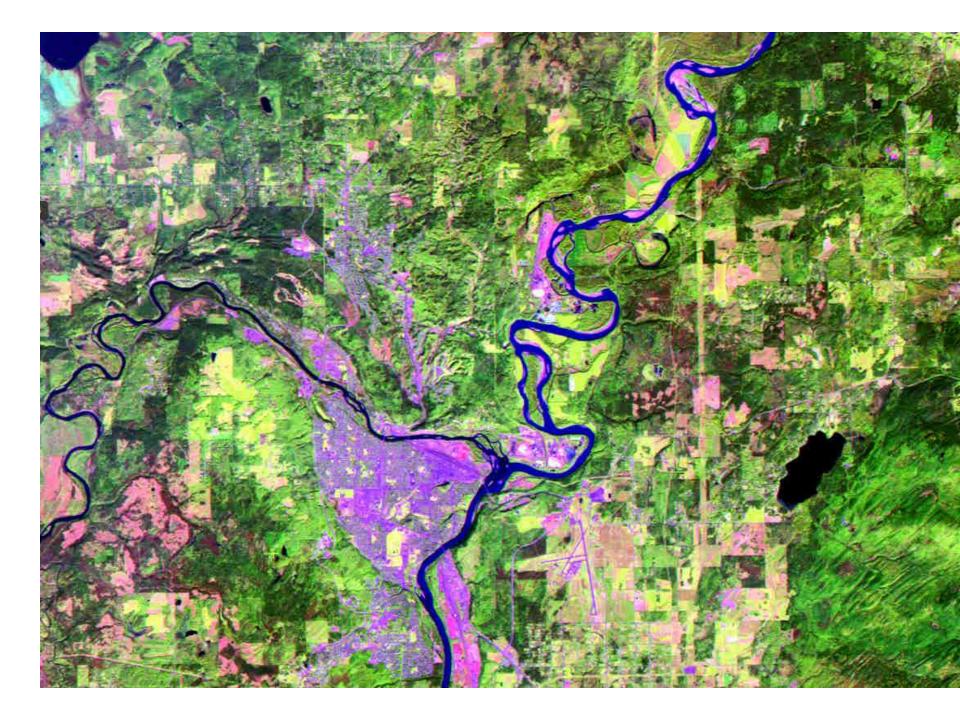
Supervised classification methods

Band 3 digital number Equiprobability contours Band 4 digital number Figure 7.44 classifier. Equiprobability contours defined by a maximum likelihood

c: Maximum likelihood

With or without null class

Supervised classification: how it works


Minimum distance: each pixel is assigned to the class whose mean is closest to data point

(in n-dimensions)

Parallelepiped: Each pixel is assigned to the class whose range it falls in (overlap = double assignment)

Maximum Likelihood: each pixel is assigned to the class for which it has the highest probability.

Max. likelihood can be run with a 'null class' (where some pixels have no assignment to any class)

Isodata

Merging and adding classes

Merging

a. if classes overlap spatially or b. are not distinguishable spectrally.

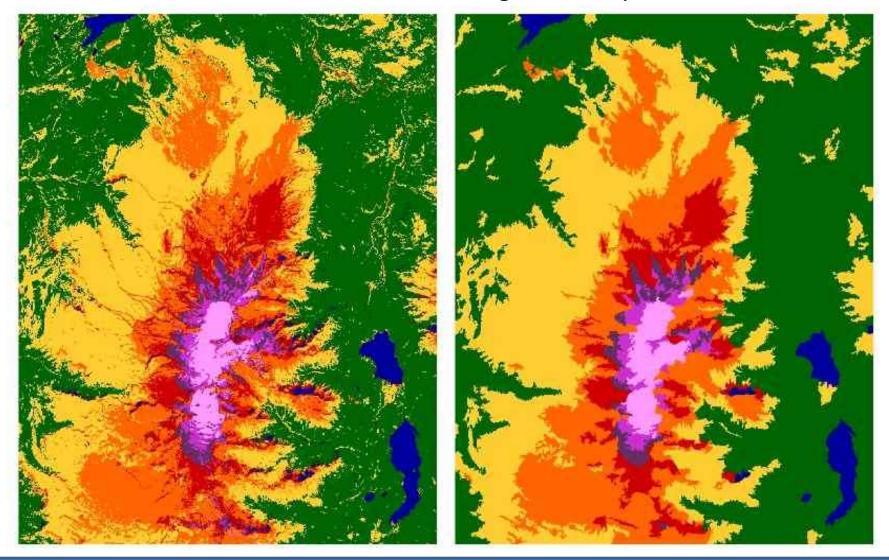
Splitting / adding: one class covers too much area [Unsupervised: - run again with more clusters]

Supervised:- create new training class or delete some training areas

Areas are unclassed - create new training class

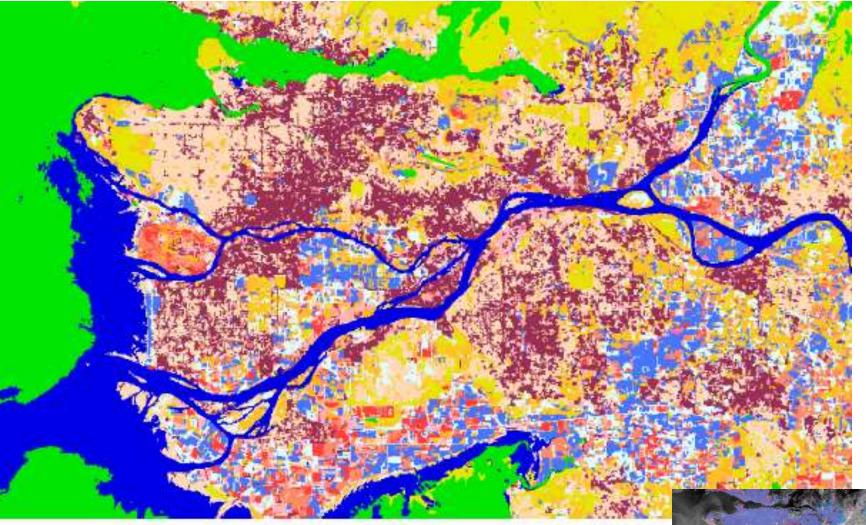
Post-classification steps

>Check the display

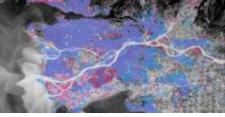

>Merge / add classes

>Sieve ... to remove isolated pixels

>Accuracy assessment


Conversion of results to vectors - see lab 7

Mt. Edziza - classification and sieve - removing isolated pixels



- recognises connectivity of adjacent pixels in the same class
- special classes e.g. wetlands can be specified and preserved
- removes small sub-areas; does not 'blur' edges like filtering

Supervised classification –GEOG432 project

Classification on Metro Vancouver, September 2011

Accuracy assessment

This requires knowing what is reality at some pixels (ground truthing), and how they were classified. This generates a **'confusion matrix'**

		Re	ference test				
	Class	Road	Building	Green	Bare	Row total	User's Accuracy
Remote	Road	101	0	25	20	146	69.18%
sensing	Building	0	128	0	17	145	88.28%
classificatio	Green	10	0	104	1	115	90.43%
n	Bare	2	4	2	105	113	92.92%
	Column total	113	132	131	143	519	
	Producer's accuracy	89.38%	96.97%	79.39%	73.43%		

Overall accuracy = 84.4%, Kappa coefficient: 0.825.

The diagonal represents pixels correctly classified An off diagonal column element = an 'error of omission' An off diagonal row element = 'error of commission'

http://www.gisdevelopment.net/application/nrm/overview/mma09_Mustapha.htm

Measuring accuracy

The overall yardstick of 85% accuracy is held up as a (rarely achieved) ideal. Producer's accuracy: based on ground truth pixels User's accuracy: based on classified pixels Kappa: a composite accuracy index

	Referen	ce DataDat water	a ice	snow	conif	decid	alpine	rock	deglac	TOTALS
water	r	2	0	0	0	0	0	0	0	2
ice		0	5	0	0	0	0	1	0	6
snow		0	1	6	0	0	0	2	0	6 9 15
conit		0	0	0	14	1	0	0	0	15
decid		0	0	0	2	4	0	0	0	6
alpir		0	0	0	0	1	1	0	0	6 2 4
rock		0	0	0	0	0	0	4	0	4
degla	ac	0	1	0	0	1	1	5	3	11
Tota	1s	2	7	6	16	7	2	12	3	55
		ice sne cor dec alu roo	ter e ow nif cid pine	ducer's 100.00 71.42 100.00 87.50 57.14 50.00 33.33 100.00	00% 29% 00% 13% 00% 33%	cy User 100.0009 83.3339 66.6679 93.3339 66.6679 50.0009 100.0009 27.2739	6 1. 6 0. 6 0. 6 0. 6 0. 6 0. 6 1.	ppa 0000 8090 6259 9060 6181 4811 0000 2308		

Error (Confusion) Matrix Classified

Measuring accuracy

The overall yardstick of 85% accuracy is held up as a (rarely achieved) ideal. Producer's accuracy: based on ground truth pixels User's accuracy: based on classified pixels Kappa: a composite accuracy index

	Referen	ce DataDat water	a ice	snow	conif	decid	alpine	rock	deglac	TOTALS
water	r	2	0	0	0	0	0	0	0	2
ice		0	5	0	0	0	0	1	0	6
snow		0	1	6	0	0	0	2	0	6 9 15
conit		0	0	0	14	1	0	0	0	15
decid		0	0	0	2	4	0	0	0	6
alpir		0	0	0	0	1	1	0	0	6 2 4
rock		0	0	0	0	0	0	4	0	4
degla	ac	0	1	0	0	1	1	5	3	11
Tota	1s	2	7	6	16	7	2	12	3	55
		ice sne cor dec alu roo	ter e ow nif cid pine	ducer's 100.00 71.42 100.00 87.50 57.14 50.00 33.33 100.00	00% 29% 00% 13% 00% 33%	cy User 100.0009 83.3339 66.6679 93.3339 66.6679 50.0009 100.0009 27.2739	6 1. 6 0. 6 0. 6 0. 6 0. 6 0. 6 1.	ppa 0000 8090 6259 9060 6181 4811 0000 2308		

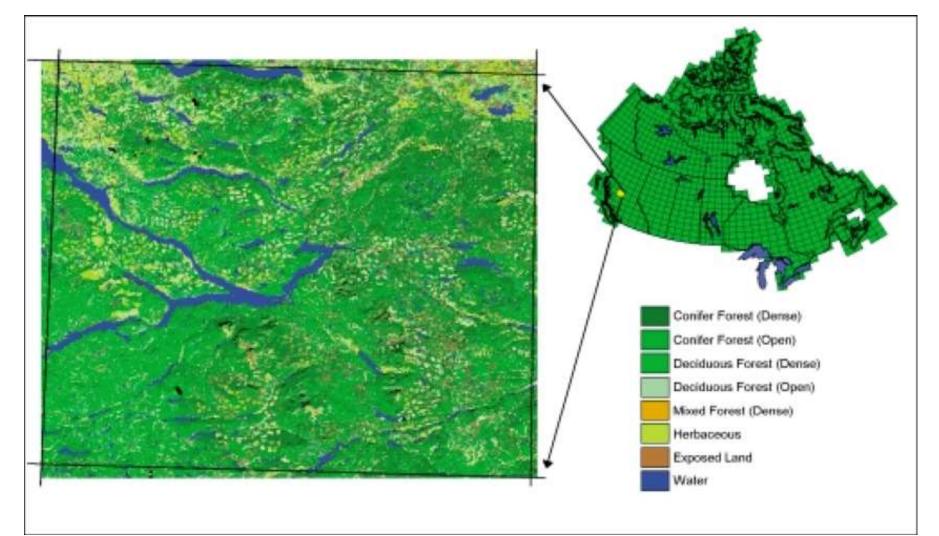
Error (Confusion) Matrix Classified

Classification review

Unsupervised classification:

clustering into classes identification of classes by user

Supervised classification:


training areas to 'train' the classification, check the statistics of the classes created check resulting coverage for errors and accuracy

Unsupervised	Supervised
Unknown classes beforehand	Pre-defined classes
Clusters may not match desired classes	Defined classes may not match natural classes
Desired clusters may be unidentifiable	Selected training areas may be inadequate
a posteriori' cluster identification time-consuming	'a priori' training is time consuming
Unexpected categories may be revealed	Only predefined classes will be found
Immediate execution, quick	Takes longer, but better directed

EOSD Earth Observation for Sustainable Development of Forests

80% Canada mapped from Landsat 7 ~2000

- using supervised classification, 480 Landsat scenes, 630 1:250,000 map sheets

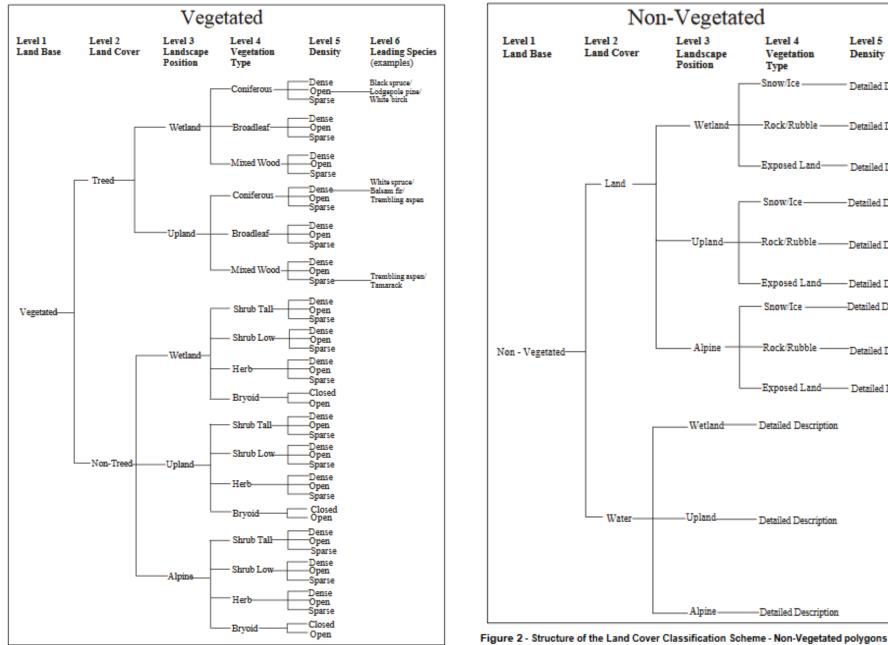
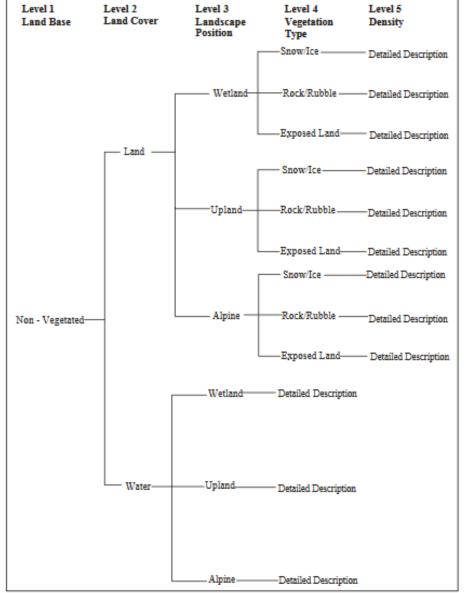
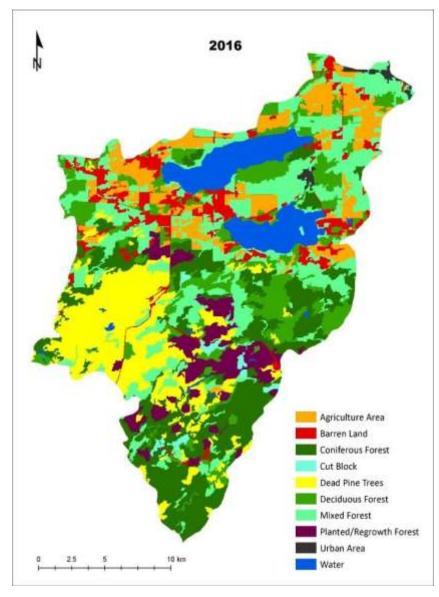



Figure 1 - Structure of the Land Cover Classification Scheme - Vegetated polygons

EOSD Earth Observation for Sustainable Development of Forests ... http://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_lcc_csc/shp_en/


Classification summary

There are many articles on classification approaches:

- Input channel combinations (see the next lectures)
- Best algorithms unsupervised and supervised
- New approaches e.g. include texture, shape etc.
- Object oriented analysis (not pixel based) .. See next slide

Object-based Image Analysis

More complex than per pixel classifiers; used in GEOG457 And by graduate students – identifies objects or shapes first