PLATFORMS & SENSORS

Platform:

the vehicle carrying the remote sensing device - e.g. ground, airborne, spaceborne

Sensor:

the remote sensing device recording wavelengths of energy e.g. camera, scanner

Image data might be referred to using platform or sensor

Another copy of my (old) lecture notes: http://web.pdx.edu/~nauna/resources/15-sensors.pdf

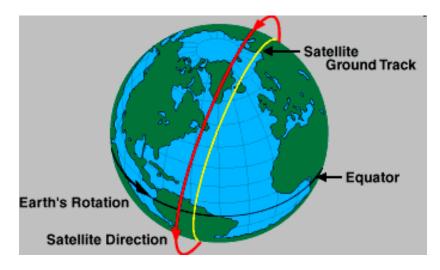
Platform = International Space Station

Sensor = Chris Hadfield's Nikon

EARLY PLATFORMS & SENSORS

Birds, Kites, Balloons, Planes, with cameras

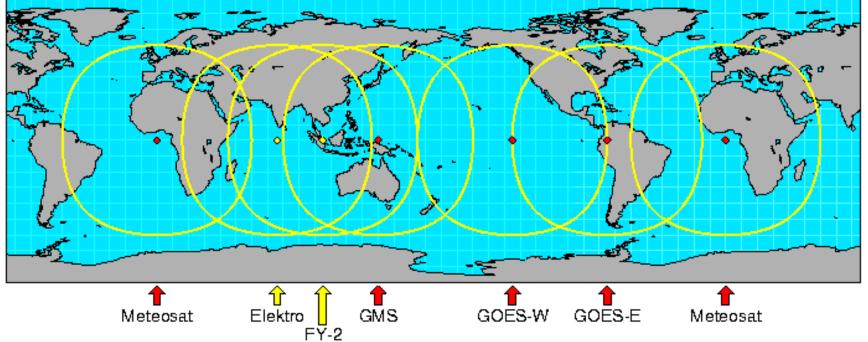
Superceded today by Unmanned Aerial Vehicles (UAV)



Corona 1959-1972 (CIA) Cold War Reconnaissance / Spy

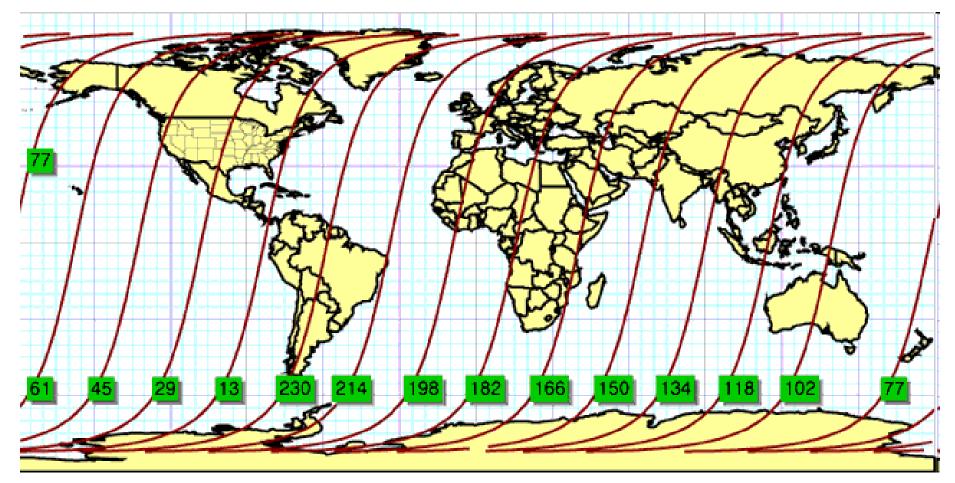
1. Satellite orbits

http://resources.yesican-science.ca/orbits1/goes.html



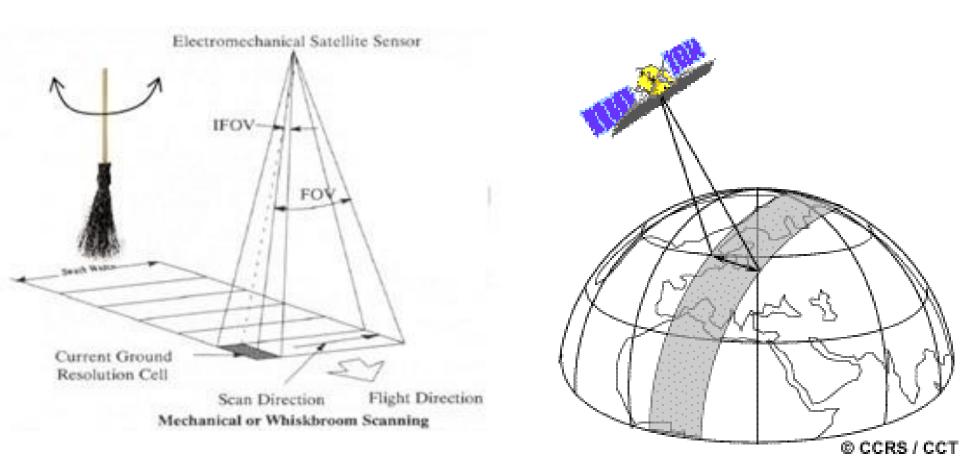
"Geostationary" e.g. Weather satellites TV, Internet, GPS-WAAS ~ 36,000 km altitude "Sun-synchronous" EO Surface monitoring mapping / updating ~ 400-900 km altitude

Satellite orbits

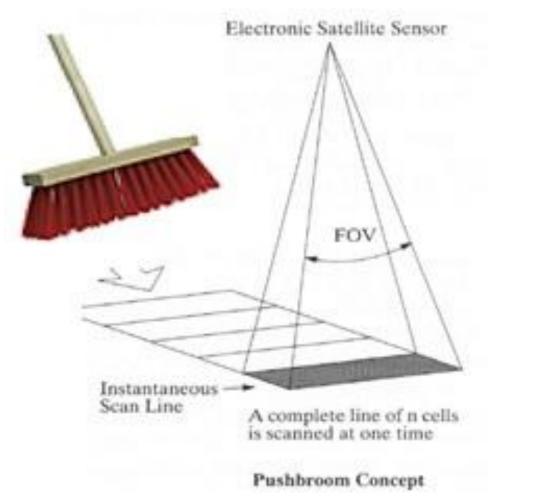

Geostationary / geosynchronous : 36,000 km above the equator, stays vertically above the same spot, rotates with earth - weather images, communications, e.g. GOES (Geostat. Operational Env. Satellite)

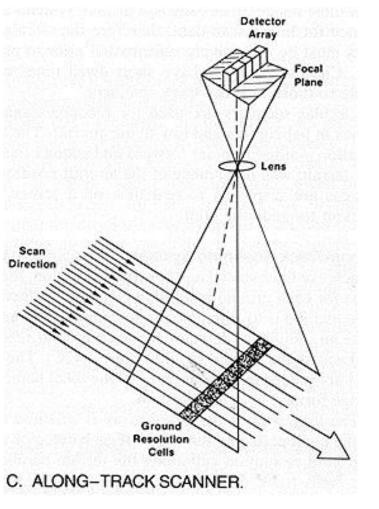
Global Geostationary Satellite Coverage

Geostationary satellites capture a (~rectangular) scene,


Sun-synchronous satellites: 400-900km altitude, rotate at ~81-82 degree angle to equator: imagery ~ the same local time each day (~10.30am) Time of day = compromise between minimum shadow and clouds (9.30-11.00am) ISS orbit is at 408 km altitude

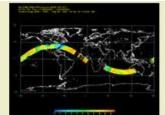
Landsat path: <u>earthnow</u>


2. Scanner types


a. Whiskbroom (mirror/ cross-track): a small number of sensitive diodes for each band sweep perpendicular to the path or swath, centred directly under the platform, i.e. at 'nadir' e.g. LANDSAT MSS /TM/ETM

b. Pushbroom (along-track):

an array of diodes (one for each column of pixels) can be 'pointed' in a selected direction, **nadir or off-nadir**, on request, usually 0-30 degrees (max.), e.g. SPOT HRV, Landsat 8 OLI* - almost all now ... * Landsat 8 is not redirectionned; swath = 185km = ~ 6000 pixels


Selected satellite remote sensing systems

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)

AVHRR (Advanced Verv High Resolution Radiometer)

CERES (Clouds and the Earth's Radiant Energy System)

DMSP/OLS (Defense Meteorological Satellite Program/Operational Linescan System)

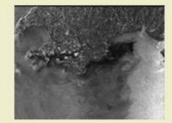
MISR (Multi-Angle Imaging

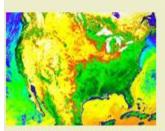
Spectroradiometer)

ETM+ (Enhanced Thematic Mapper Plus)

MOPITT (Measurements of

Pollution in the Troposphere)


IKONOS


IRS (Indian Remote Sensing Satellite)

QuickBird

SAR (Synthetic Aperture Radar)

MODIS (Moderate-Resolution Imaging Spectroradiometer)

Wim Bakker's website http://members.home.nl/wim.h.bakker

3. Sensor groups

Multi-spectral sensors record bands in multiple wavelengths: ... but tend to focus on one of these groups

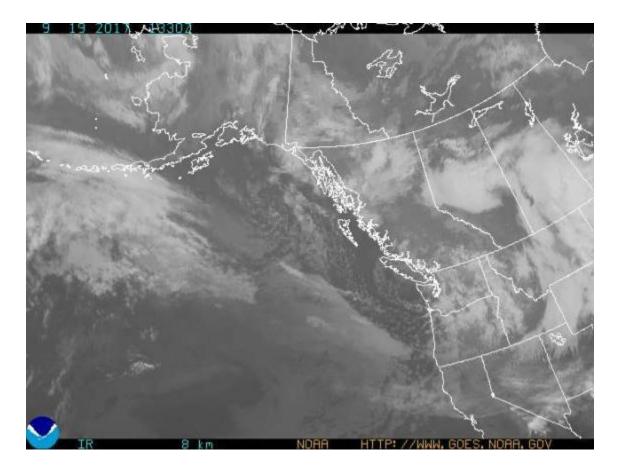
□ Visible, Near IR, Mid IR - Reflective

□ Thermal - emissive

□ Microwave - emissive or RADAR

And at different **spatial resolutions** (pixel size e.g...):

Low 1km

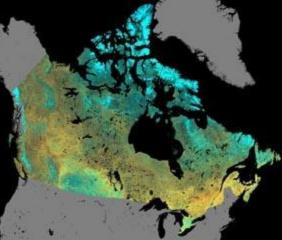

- □ Medium 250m
- \Box High 30m
- Very high 1m

Most satellites now carry multiple sensors with varying resolutions

4. Low Resolution

Weather: GOES (24 HOURS per day) GOES 8: 75W longitude, GOES 9: 135W longitude Visible: 1km, Thermal: 4km, 10-bit data (DN = 0- 1023) GOES 17: 16 bands, VNIR (5)/ TIR (11)

http://www.goes.noaa.gov



4. Low Resolution

NOAA AVHRR (Advanced 'Very High' Resolution Radiometer) 1.1km Red / NIR / TIR 1978-present (19 satellites to 2010) - global vegetation monitoring: data are freely downloadable. 18, 19 operational

2500 x 2500 pixels, <u>10</u> bit data

AVHRR/3 Channel Characteristics				
Channel Number	Resolution at Nadir	Wavelength (um)	Typical Use	
1	1.09 km	0.58 - 0.68	Daytime cloud and surface mapping	
2	1.09 km	0.725 - 1.00	Land-water boundaries	
3A	1.09 km	1.58 - 1.64	Snow and ice detection	
3В	1.09 km	3.55 - 3.93	Night cloud mapping, sea surface temperature	
4	1.09 km	10.30 - 11.30	Night cloud mapping, sea surface temperature	
5	1.09 km	11.50 - 12.50	Sea surface temperature	

5. Medium RESOLUTION

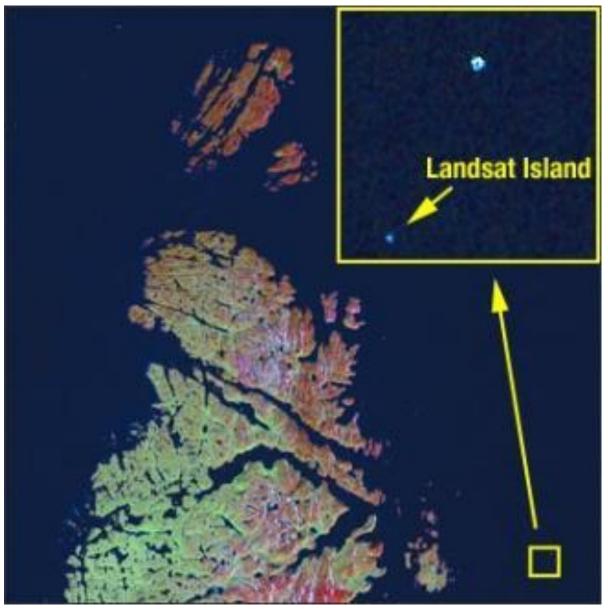
LANDSAT (U.S.) initially known as ERTS (Earth Resource Technology Satellite); Multi-Spectral Scanner (<u>MSS: 80m</u>)

1972 Landsat 1 until 1978

1975 Landsat 2 until 1982

1978 Landsat 3 until 1983

Band	Spectral band	Resolution
4	0,5 - 0,6 µm	79 m x 82 m
5	0,6 - 0,7 µm	79 m x 82 m
6	0,7 - 0,8 µm	79 m x 82 m
7	0,8 - 1,1 µm	79 m x 82 m


(No mid-IR bands) Bands 1,2,3 were on the 'Return Beam Vidicon' (RBV)

A B C D F F G H I J K L M N O P D R S T U V

Landsat image data

Discovered in 1976, Labrador 25m x 45m (Landsat 1)

[Landsat Island is a small, uninhabited island located 20 kilometres (12 mi) the northeast coast of Labrador

Verified by Dr. Frank Hall (Canadian Hydrographic Service). He was strapped into a harness and lowered from a helicopter down to the island. As he was lowered out of the helicopter, a polar bear took a swat at him.

The bear was on the highest point on the island and it was hard for him to see because it was white.

6. High resolution Landsat 4/5 Thematic Mapper (TM) 1982/84: 'the next generation'

Band No.	Wavelength Interval (µm)	Spectral Response	Resolution (m)
1	0.45 - 0.52	Blue-Green	30
2	0.52 - 0.60	Green	30
3	0.63 - 0.69	Red	30
4	0.76 - 0.90	Near IR	30
5	1.55 - 1.75	Mid-IR	30
6	10.40 - 12.50	Thermal IR	120
7	2.08 - 2.35	Mid-IR	30

- Improved resolution (80 -> 30 m)
- Addition of mid-IR (and thermal)
- Included MSS (till 1999) for continuity

 $* \left[* \left[* \left[* \right] * \right] * \left[* \right] * \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \left[* \right] * \left[* \left[* \right] * \left[* \right] * \left[* \left[* \left[* \right] * \left[$

High resolution SPOT (France) High Resolution Visible (HRV) bands 1986 ->

SPOT 1-3: 1986, 1990, 1993

Mode	Band	Spectral band	Resolution
XS-multispectral	XS1	0,50 - 0,59 µm	20m x 20m
	XS2	0,61 - 0,68 µm	20m x 20m
	XS3	0,79 - 0,89 µm	20m x 20m
P-panchromatique	PAN	0,51 - 0,73 µm	10m x 10m

SPOT 4- 5: 1998, 2002

Mode	Band	Spectral band	Resolution
Multispectral	B1	0,50 - 0,59 µm	20m x 20m
	B2	0,61 - 0,68 µm	20m x 20m
	B3	0,79 - 0,89 µm	20m x 20m
	MIR	1,58 - 1,75 µm	20m x 20m
M - monospectral	PAN	0,61 - 0,68 µm	10m x 10m

	LANDSAT TM	SPOT HRV
Launch	1982 / 1984	1986
Altitude	705 km	832 km
Attitude (polar)	8.2 degrees	8.7 degrees
Equatorial time	9.45 am	10.30 am
Swath width	185km	60km
Repeat coverage	16 days	26 days
Sensor	Thematic Mapper (TM)	High Resolution Visible (HRV)
Number of detectors	100	6000/3000
Advantages	#bands, swath size	higher resolution, # 'looks'
Bands	7	3 + 1 (no MIR bands)
Scanner type	Mirror (Whisk broom)	Pushbroom

SPOT (ESA / France) http://www.spot.com

1 - 3: 1986 - 1993 (-> 2003) programmable, pushbroom - 60km wide 20m RedGreen/near-IR 10m PAN

4 'hext generation' included Mid-IR 1998 20m (PAN 10m)

SPOT 5 (2002): Similar to 4, but also high-res PAN option (2.5 / 5m)

SPOT receiving station built at U. Lethbridge (2005)

SPOT 4/5 imagery for Canada (2005-2010) downloadable at geobase.ca

Otherwise - Not Free!

[SPOT 6 and 7: 2012 / 2014 very high res. 1.5m]

Landsat image data

Not the only land image data but ..

The most accessible/downloadable
free after 2008

>Longest continuous record: 1972 (1984)

Landsat 1

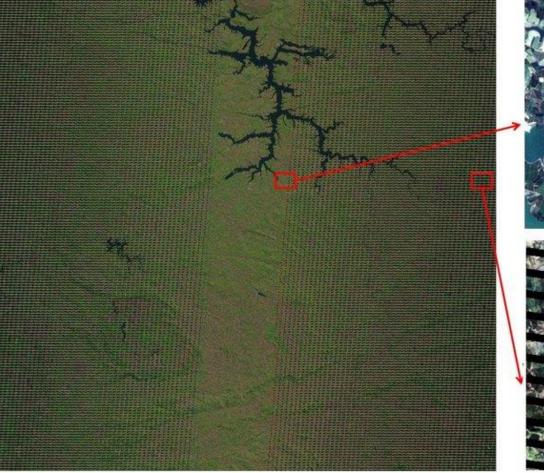
>Suitable resolution (30m) for northern environments

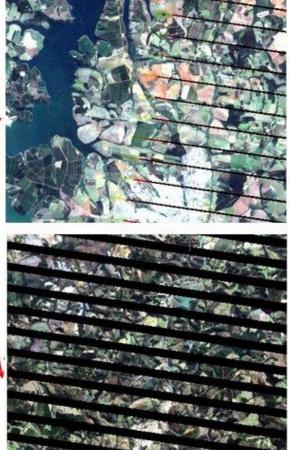
>Suitable scale for landscape analysis

> These factors enabled it for Google Earth mosaic

Landsat 4-7 summary

1982 Landsat 4 Thematic Mapper (TM) until 1987


1984 Landsat 5 TM ... operational till Nov 2011


1993 Landsat 6 Enhanced TM: (ETM+) failed after launch 1999 Landsat 7 ETM+ ... sensor malfunctionned April 2003 Landsat imagery (ETM+ ~2000) Google Earth mosaic in 2005

[Overlap for Landsat scenes is 14% at equator, 45% at 50 degrees]

Enhanced Thematic Mapper Plus (ETM+) (Landsat 7): New bands versus Landsat 5 TM: PAN 0.52-0.9 (Green->IR) band 15m

Sensor malfunctionned, April 2003 'Scan Line Calibrator' failed Missing data lines thin towards the centre leaving a usable 20km strip; data are still transmitting

Landsat 8 successfully launched February 2013

Operational Land Imager (OLI): 16-bit data (versus 8-bit for previous sensors)

	Spectral Band	Wavelength	Resolution
ТМ	Band 1 - Coastal / Aerosol	0.433 - 0.453 µm	30 m
1	Band 2 - Blue	0.450 - 0.515 µm	30 m
2	Band 3 - Green	0.525 - 0.600 µm	30 m
3	Band 4 - Red	0.630 - 0.680 µm	30 m
4	Band 5 - Near Infrared	0.845 - 0.885 µm	30 m
5	Band 6 - Short Wavelength Infrared	1.560 - 1.660 µm	30 m
7 ETM+	Band 7 - Short Wavelength Infrared	2.100 - 2.300 µm	30 m
8	Band 8 - Panchromatic	0.500 - 0.680 µm	15 m
	Band 9 - Cirrus	1.360 - 1.390 µm	30 m

OLI Spectral Bands^[13]

Landsat 8 successfully launched February 2013

Thermal InfraRed Sensor TIRS

6

- OLI + TIRS = 2 sensors on one platform

Spectral Band	Wavelength	Resolution	
Band 10 - Long Wavelength Infrared	10.30 - 11.30 µm	100 m	
Band 11 - Long Wavelength Infrared	11.50 - 12.50 µm	100 m	
TIRS Spectral Bands ^[13]			

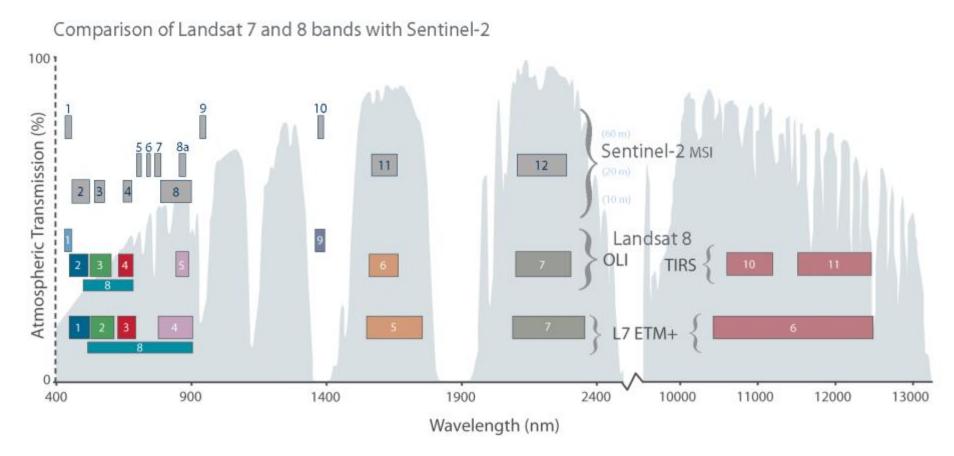
http://landsat.usgs.gov/L8_band_combos.php

European Space Agency (ESA)

Copernicus Program Sentinel 2a,b 2015/17

free download

Multi-Spectral Instrument (MSI) 10 / 20m



ESA Copernicus Program - Sentinel 2, 2015/2017 - free download; multi-spectral instrument (MSI)

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)
Band 1 – Coastal aerosol	0.443	60
Band 2 – Blue	0.490	10
Band 3 – Green	0.560	10
Band 4 – Red	0.665	10
Band 5 – Vegetation Red Edge	0.705	20
Band 6 – Vegetation Red Edge	0.740	20
Band 7 – Vegetation Red Edge	0.783	20
Band 8 – NIR	0.842	10
Band 8A – Narrow NIR	0.865	20
Band 9 – Water vapour	0.945	60
Band 10 – SWIR – Cirrus	1.375	60
Band 11 – SWIR	1.610	20
Band 12 – SWIR	2.190	20

https://en.wikipedia.org/wiki/Sentinel-2#Instruments

Sentinel 2 vs Landsat 8 OLI vs Landsat 7 ETM+ bands:

S2 has finest '**spectral**' (radiometric) resolution = narrowest bands

L8 has finer 'spectral' resolution than L7 ETM+

Sensor Summary so far:

NASA Landsat MSS 1-3 1972-82 Free (since 2008) Landsat TM 4-8 1982-> Free SPOT (France) 1-4 1986- > NOT Free NOT Free

□ Sentinel-2 (ESA) 2013->

Free

□ Many others – Free except for very high resolution (see later lectures)

http://www.youtube.com/watch?v=cfSaztUiw5s

Earth Observing satellite systems

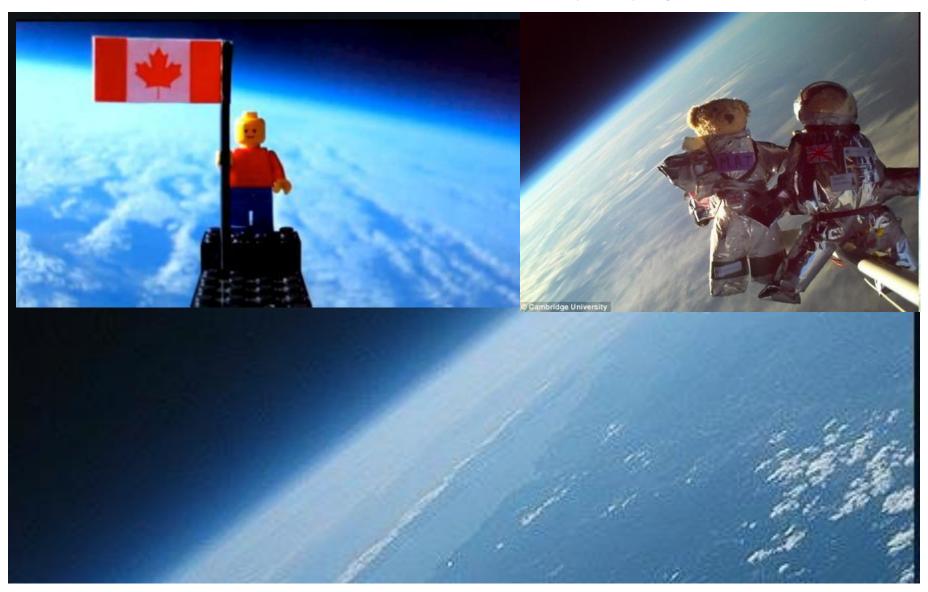
https://en.wikipedia.org/wiki/List_of_Earth_observation_satellites

https://directory.eoportal.org/web/eoportal/satellite-missions

https://www.itc.nl/Pub/sensordb/AllSensors.aspx

https://gisgeography.com/satellite-list/

7. Very high resolution 0.3-5m (Corporate) 2000-> e.g. Ikonos, Quickbird, Worldview, Geoeye and others


Inauguration of Barack Obama as US President - Jan 20 2009 (Geoeye)

mini- 'dove' nanosatellites

Very high resolution – 1 metre

Total cost: (weather) balloon, camera (from eBay) and hand warmers < \$130 Platform = balloon, sensor = eBay camera