Lecture 3: Spatial Modeling

GEOG413/613 Dr. Anthony Jjumba

Spatial Modeling

- Spatial analysis (more from last week)
 - Nearest Neighbor Analysis
 - Spatial Autocorrelation
- Spatial modeling

Spatial Analysis

- Nearest Neighbor Analysis
 - A method used to determine whether a distribution is clustered, random or regular.

 To assess the spacing of points, the average nearest neighbor distance is determined.

3

Spatial Analysis

Nearest Neighbor Analysis

The Average Nearest neighbor distance = *lobs*

Spatial Analysis

 The nearest Neighbor statistic is determined as a ratio of robs to rexp, the expected average nearest neighbor distance for a random distribution

$$r_{
m exp} = rac{1}{2\sqrt{n/A}}$$
 Where:
A is area of study region n is number of points

 $R = rac{r_{obs}}{r_{
m exp}}$

Spatial Autocorrelation

- The First Law of Geography by Waldo Tobler (1970): "everything is related to everything else, but near things are more related than distant things".
- Spatial Autocorrelation:
 - The degree to which the values representing a phenomenon tend to be clustered together in space (positive spatial autocorrelation) or dispersed (negative spatial autocorrelation).

Spatial Autocorrelation

Spatial Autocorrelation

 The autocorrelation coefficients for interval and ordinal data are Moran's statistic *I* and Geary's coefficient *c*, respectively.

There is more depth to spatial pattern analysis and spatial autocorrelation We may need a lecture session to cover these.

Modeling

- Modeling as in the application of GIS-based techniques to represent the real world
- A model is a simplified representation of reality
 - A map is an example of a model
 - It's a representation of the real world
 - It's a simplification of the real world
 - It serves a purpose (objective)
- Modeling should be considered as a procedure

Modeling

- Some Types of GIS Models
 - Static/Dynamic
 - Descriptive/Predictive/Prescriptive
 - Deterministic/Stochastic
 - Inductive/Deductive

Types of GIS Models

- Static/Dynamic
 - A static model represents a temporal snapshot of a phenomenon (state of the phenomenon is stable).
 - A dynamic model emphasizes the spatiotemporal changes of a phenomenon (changes over time).

11

Types of GIS Models

- Descriptive/Predictive/Prescriptive
 - <u>Descriptive models</u> provide insights about a study area. E.g. Thematic map of land cover
 - Predictive models offer a forecast of what could happen in the future. Models use past and present data in addition to statistical models and predictive algorithms to generate what-if (alternative) scenarios
 - E.g. Prediction of future land use patterns
 - <u>Prescriptive models</u> use optimization techniques to provide the best solution.
 - E.g. Best route from A to B

Types of GIS Models

- Deterministic/Stochastic
 - Both deterministic and stochastic models are mathematical models.
 - <u>Deterministic models</u> the process is fully described by the parameter values and the initial conditions.
 - Stochastic models consider the presence of some randomness in one or more of its parameters or variables.
 - Although the real world is characterized by stochasticity, there are times when deterministic models are sufficient

13

Types of GIS Models

- Inductive/Deductive
 - A deductive model presents outcomes derived from established theories, physical laws or relationships.
 - E.g. Model is based on established laws of climatology
 - An inductive model represents the conclusion derived from data.
 - E.g. model based on past climatology observations can be relied upon

The Modeling Process

- The development of a model follows a series of steps.
 - Define the goals of the model (objectives of the study)
 - Phenomenon to be modeled
 - Required data
 - Appropriate spatial and temporal scales
 - Model Specification
 - Determine the elements in the model, their properties,
 - Design the interrelations and interactions between the elements
 - Specify the parameters of the model (properties of the elements)
 - Specify the mathematical/statistical models

The Modeling Process

- The development of a model follows a series of steps:
 - Model Verification
 - Model is tested to check that it is correctly implemented with respect to the conceptual model (implementation matches the literature)
 - Model Calibration
 - Adjust parameter values so that the model's output appropriately represent the phenomenon

16

The Modeling Process

- The development of a model follows a series of steps.
 - Sensitivity Analysis
 - Determine how the different variables impact the model's output
 - Model Validation
 - Evaluate the correctness of the model's output.
 Comparison is made to an existing dataset.

17

Integrating GIS with Models

- There are three ways of linking a GIS to a model
 - Loose coupling: The model and GIS are not directly connected. Generally data files are transferred between the GIS and the model through each application's independent import and export functions.
 - **Tight coupling:** The GIS and the model software are linked and are dependent on each other.
 - **Embedded system:** The GIS and the model share memory and a common interface.

В

References

- Longley P.A., M. F. Goodchild, D. J. Maguire and D. W. Rhind. 2005.Geographic Information Systems and Science. Second Edition. John Wiley, Chichester, 2005.
- Goodchild, M.F. 2003. Geographic Information Science and Systems for Environmental Management. Annual Review of Environment and Resources. Vol. 28: pp 493-519.
- Brown et al., 2005. Spatial process and data models: Toward integration of agent-based models and GISJournal of Geographical Systems, 7 (1) (2005), pp. 25–47
- Crooks et al., 2008. Key challenges in agent-based modelling for geospatial simulation, Computers, Environment and Urban Systems 32(6), pp 417-430,